有理傅里叶-切比雪夫积分算子的Riesz和及幂奇点函数的逼近

IF 0.5 3区 数学 Q3 MATHEMATICS
P. Patseika, Y. Rouba, K. Smatrytski
{"title":"有理傅里叶-切比雪夫积分算子的Riesz和及幂奇点函数的逼近","authors":"P. Patseika,&nbsp;Y. Rouba,&nbsp;K. Smatrytski","doi":"10.1007/s10476-025-00073-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper Riesz sums of Fourier-Chebyshev rational integral operators with restrictions on the number of geometrically distinct poles are introduced. Approximation of the function <span>\\((1-x)^\\gamma\\)</span>, <span>\\(\\gamma \\in (0,1)\\)</span>, by this method is considered. Estimates of pointwise and uniform approximation are established,\nas well as asymptotic expressions for the uniform approximation majorant. Additionally, the optimal values of the parameters of the approximating function, at which the rate of decrease of the majorant is the greatest are found. In the case of Riesz sums of a polynomial Fourier-Chebyshev series, approximation of functions satisfying the Lipschitz condition of order <span>\\(\\gamma\\)</span> on the segment <span>\\([-1,1]\\)</span> is investigated.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 2","pages":"635 - 666"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Riesz summation of rational Fourier-Chebyshev integral operators and approximations of functions with a power singularity\",\"authors\":\"P. Patseika,&nbsp;Y. Rouba,&nbsp;K. Smatrytski\",\"doi\":\"10.1007/s10476-025-00073-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper Riesz sums of Fourier-Chebyshev rational integral operators with restrictions on the number of geometrically distinct poles are introduced. Approximation of the function <span>\\\\((1-x)^\\\\gamma\\\\)</span>, <span>\\\\(\\\\gamma \\\\in (0,1)\\\\)</span>, by this method is considered. Estimates of pointwise and uniform approximation are established,\\nas well as asymptotic expressions for the uniform approximation majorant. Additionally, the optimal values of the parameters of the approximating function, at which the rate of decrease of the majorant is the greatest are found. In the case of Riesz sums of a polynomial Fourier-Chebyshev series, approximation of functions satisfying the Lipschitz condition of order <span>\\\\(\\\\gamma\\\\)</span> on the segment <span>\\\\([-1,1]\\\\)</span> is investigated.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 2\",\"pages\":\"635 - 666\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-025-00073-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00073-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了具有几何不同极点数目限制的傅里叶-切比雪夫有理数积分算子的Riesz和。用这种方法逼近了函数\((1-x)^\gamma\), \(\gamma \in (0,1)\)。建立了逐点逼近和均匀逼近的估计,并给出了均匀逼近的渐近表达式。此外,还找到了近似函数参数的最优值,在此值下,主体的下降速率最大。在多项式Fourier-Chebyshev级数的Riesz和的情况下,研究了满足\(\gamma\)阶Lipschitz条件的函数在线段\([-1,1]\)上的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Riesz summation of rational Fourier-Chebyshev integral operators and approximations of functions with a power singularity

In the present paper Riesz sums of Fourier-Chebyshev rational integral operators with restrictions on the number of geometrically distinct poles are introduced. Approximation of the function \((1-x)^\gamma\), \(\gamma \in (0,1)\), by this method is considered. Estimates of pointwise and uniform approximation are established, as well as asymptotic expressions for the uniform approximation majorant. Additionally, the optimal values of the parameters of the approximating function, at which the rate of decrease of the majorant is the greatest are found. In the case of Riesz sums of a polynomial Fourier-Chebyshev series, approximation of functions satisfying the Lipschitz condition of order \(\gamma\) on the segment \([-1,1]\) is investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信