Asta-Advances in Statistical Analysis最新文献

筛选
英文 中文
Nowcasting GDP using machine learning methods
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-11-13 DOI: 10.1007/s10182-024-00515-0
Dennis Kant, Andreas Pick, Jasper de Winter
{"title":"Nowcasting GDP using machine learning methods","authors":"Dennis Kant,&nbsp;Andreas Pick,&nbsp;Jasper de Winter","doi":"10.1007/s10182-024-00515-0","DOIUrl":"10.1007/s10182-024-00515-0","url":null,"abstract":"<div><p>This paper compares the ability of several econometric and machine learning methods to nowcast GDP in (pseudo) real-time. The analysis takes the example of Dutch GDP over the period 1992Q1–2018Q4 using a broad data set of monthly indicators. It discusses the forecast accuracy but also analyzes the use of information from the large data set of macroeconomic and financial predictors. We find that, on average, the random forest provides the most accurate forecast and nowcasts, whilst the dynamic factor model provides the most accurate backcasts.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 1","pages":"1 - 24"},"PeriodicalIF":1.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00515-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Change point detection in high dimensional covariance matrix using Pillai’s statistics
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-11-09 DOI: 10.1007/s10182-024-00516-z
Seonghun Cho, Minsup Shin, Young Hyun Cho, Johan Lim
{"title":"Change point detection in high dimensional covariance matrix using Pillai’s statistics","authors":"Seonghun Cho,&nbsp;Minsup Shin,&nbsp;Young Hyun Cho,&nbsp;Johan Lim","doi":"10.1007/s10182-024-00516-z","DOIUrl":"10.1007/s10182-024-00516-z","url":null,"abstract":"<div><p>This research proposes a method to test and estimate change points in the covariance structure of high-dimensional multivariate series data. Our method uses the trace of the beta matrix, known as Pillai’s statistics, to test the change in covariance matrix at each time point. We study the asymptotic normality of Pillai’s statistics for testing the equality of two covariance matrices when both sample size and dimension increase at the same rate. We test the existence of a single change point in a given time period using Cauchy combination test, the test using an weighted sum of Cauchy transformed <i>p</i>-values, and estimate the change point as the point whose statistic is the greatest. To test and estimate multiple change points, we use the idea of the wild binary segmentation and repeatedly apply the procedure for a single change point to each segmented period until no significant change point exists. We numerically provide the size and power of our method. We finally apply our procedure to finding abnormal behavior in the investment of a private equity fund.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 1","pages":"53 - 84"},"PeriodicalIF":1.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00516-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index 基于双变量离散指数的双变量计数时间序列拟合优度测试
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-09-17 DOI: 10.1007/s10182-024-00512-3
Huiqiao Wang, Christian H. Weiß, Mingming Zhang
{"title":"Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index","authors":"Huiqiao Wang, Christian H. Weiß, Mingming Zhang","doi":"10.1007/s10182-024-00512-3","DOIUrl":"https://doi.org/10.1007/s10182-024-00512-3","url":null,"abstract":"<p>A common choice for the marginal distribution of a bivariate count time series is the bivariate Poisson distribution. In practice, however, when the count data exhibit zero inflation, overdispersion or non-stationarity features, such that a marginal bivariate Poisson distribution is not suitable. To test the discrepancy between the actual count data and the bivariate Poisson distribution, we propose a new goodness-of-fit test based on a bivariate dispersion index. The asymptotic distribution of the test statistic under the null hypothesis of a first-order bivariate integer-valued autoregressive model with marginal bivariate Poisson distribution is derived, and the finite-sample performance of the goodness-of-fit test is analyzed by simulations. A real-data example illustrate the application and usefulness of the test in practice.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"54 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis 贝叶斯联合相对量子回归潜序多元线性模型在多方一致分析中的应用
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-08-20 DOI: 10.1007/s10182-024-00509-y
YuZhu Tian, ChunHo Wu, ManLai Tang, MaoZai Tian
{"title":"Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis","authors":"YuZhu Tian,&nbsp;ChunHo Wu,&nbsp;ManLai Tang,&nbsp;MaoZai Tian","doi":"10.1007/s10182-024-00509-y","DOIUrl":"10.1007/s10182-024-00509-y","url":null,"abstract":"<div><p>In this paper, we propose a Bayesian quantile regression (QR) approach to jointly model multivariate ordinal data. Firstly, a multivariate latent variable model is used to link the multivariate ordinal data and latent continuous responses and the multivariate asymmetric Laplace (MAL) distribution is employed to construct the joint QR-based working likelihood for the considered model. Secondly, adaptive-<span>(L_{1/2})</span> penalization priors of regression parameters are incorporated into the working likelihood to implement high-dimensional Bayesian joint QR inference. Markov Chain Monte Carlo (MCMC) algorithm is utilized to derive the fully conditional posterior distributions of all parameters. Thirdly, Bayesian joint relatively QR estimation approach is recommended to result in more efficient estimation results. Finally, Monte Carlo simulation studies and a real instance analysis of multirater agreement data are presented to illustrate the performance of the proposed Bayesian joint relatively QR approach.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 1","pages":"85 - 116"},"PeriodicalIF":1.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Finite-sample bias correction method for general linear model in the presence of differential measurement errors 差异测量误差下一般线性模型的有限样本偏差校正方法
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-08-14 DOI: 10.1007/s10182-024-00510-5
Ali Al-Sharadqah, Karine Bagdasaryan, Ola Nusierat
{"title":"A Finite-sample bias correction method for general linear model in the presence of differential measurement errors","authors":"Ali Al-Sharadqah,&nbsp;Karine Bagdasaryan,&nbsp;Ola Nusierat","doi":"10.1007/s10182-024-00510-5","DOIUrl":"10.1007/s10182-024-00510-5","url":null,"abstract":"<div><p>This paper focuses on the general linear measurement error model, in which some or all predictors are measured with error, while others are measured precisely. We propose a semi-parametric estimator that works under general mechanisms of measurement error, including differential and non-differential errors. Other popular methods, such as the corrected score and conditional score methods, only work for non-differential measurement error models, but our estimator works in all scenarios. We develop our estimator by considering a family of objective functions that depend on an unspecified weight function. Using statistical error analysis and perturbation theory, we derive the optimal weight function under the small-sigma regime. The resulting estimator is statistically optimal in all senses. Even though we develop it under the small-sigma regime, we also establish its consistency and asymptotic normality under the large sample regime. Finally, we conduct a series of numerical experiments to confirm that the proposed estimator outperforms other existing methods.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 1","pages":"149 - 195"},"PeriodicalIF":1.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classes of probability measures built on the properties of Benford’s law 基于本福德定律性质的概率度量类别
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-08-08 DOI: 10.1007/s10182-024-00505-2
Roy Cerqueti, Mario Maggi
{"title":"Classes of probability measures built on the properties of Benford’s law","authors":"Roy Cerqueti,&nbsp;Mario Maggi","doi":"10.1007/s10182-024-00505-2","DOIUrl":"10.1007/s10182-024-00505-2","url":null,"abstract":"<div><p>Benford’s law is a particular discrete probability distribution that is often satisfied by the significant digits of a dataset. The nonconformity with Benford’s law suggests the possible presence of data manipulation. This paper introduces two novel generalized versions of Benford’s law that are less restrictive than the original Benford’s law—hence, leading to more probable conformity of a given dataset. Such generalizations are grounded on the existing mathematical relations between Benford’s law probability distribution elements. Moreover, one of them leads to a set of probability distributions that is a proper subset of that of the other one. We show that the considered versions of Benford’s law have a geometric representation on the three-dimensional Euclidean space. Through suitable optimization models, we show that all the probability distributions satisfying the more restrictive generalization exhibit at least acceptable conformity with Benford’s law, according to the most popular distance measures. We also present some examples to highlight the practical usefulness of the introduced devices.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 1","pages":"197 - 216"},"PeriodicalIF":1.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00505-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Deducing neighborhoods of classes from a fitted model 出版商更正:从拟合模型推导类邻域
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-07-30 DOI: 10.1007/s10182-024-00508-z
Alexander Gerharz, Andreas Groll, Gunther Schauberger
{"title":"Publisher Correction: Deducing neighborhoods of classes from a fitted model","authors":"Alexander Gerharz,&nbsp;Andreas Groll,&nbsp;Gunther Schauberger","doi":"10.1007/s10182-024-00508-z","DOIUrl":"10.1007/s10182-024-00508-z","url":null,"abstract":"","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"108 4","pages":"915 - 915"},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00508-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy 瓦瑟施泰因原点回归:应用于意大利地区国内生产总值和预期寿命的联合动态变化
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-07-16 DOI: 10.1007/s10182-024-00506-1
Susanna Levantesi, Andrea Nigri, Paolo Pagnottoni, Alessandro Spelta
{"title":"Wasserstein barycenter regression: application to the joint dynamics of regional GDP and life expectancy in Italy","authors":"Susanna Levantesi, Andrea Nigri, Paolo Pagnottoni, Alessandro Spelta","doi":"10.1007/s10182-024-00506-1","DOIUrl":"https://doi.org/10.1007/s10182-024-00506-1","url":null,"abstract":"<p>We propose to investigate the joint dynamics of regional gross domestic product and life expectancy in Italy through Wasserstein barycenter regression derived from optimal transport theory. Wasserstein barycenter regression has the advantage of being flexible in modeling complex data distributions, given its ability to capture multimodal relationships, while maintaining the possibility of incorporating uncertainty and priors, other than yielding interpretable results. The main findings reveal that regional clusters tend to emerge, highlighting inequalities in Italian regions in economic and life expectancy terms. This suggests that targeted policy actions at a regional level fostering equitable development, especially from an economic viewpoint, might reduce regional inequality. Our results are validated by a robustness check on a human mobility dataset and by an illustrative forecasting exercise, which confirms the model’s ability to estimate and predict joint distributions and produce novel empirical evidence.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"38 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A spatio-temporal model for binary data and its application in analyzing the direction of COVID-19 spread 二元数据时空模型及其在分析 COVID-19 传播方向中的应用
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-07-08 DOI: 10.1007/s10182-024-00507-0
Anagh Chattopadhyay, Soudeep Deb
{"title":"A spatio-temporal model for binary data and its application in analyzing the direction of COVID-19 spread","authors":"Anagh Chattopadhyay,&nbsp;Soudeep Deb","doi":"10.1007/s10182-024-00507-0","DOIUrl":"10.1007/s10182-024-00507-0","url":null,"abstract":"<div><p>It is often of primary interest to analyze and forecast the levels of a continuous phenomenon as a categorical variable. In this paper, we propose a new spatio-temporal model to deal with this problem in a binary setting, with an interesting application related to the COVID-19 pandemic, a phenomena that depends on both spatial proximity and temporal auto-correlation. Our model is defined through a hierarchical structure for the latent variable, which corresponds to the probit-link function. The mean of the latent variable in the proposed model is designed to capture the trend and the seasonal pattern as well as the lagged effects of relevant regressors. The covariance structure of the model is defined as an additive combination of a zero-mean spatio-temporally correlated process and a white noise process. The parameters associated with the space-time process enable us to analyze the effect of proximity of two points with respect to space or time and its influence on the overall process. For estimation and prediction, we adopt a complete Bayesian framework along with suitable prior specifications and utilize the concepts of Gibbs sampling. Using the county-level data from the state of New York, we show that the proposed methodology provides superior performance than benchmark techniques. We also use our model to devise a novel mechanism for predictive clustering which can be leveraged to develop localized policies.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"108 4","pages":"823 - 851"},"PeriodicalIF":1.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artwork pricing model integrating the popularity and ability of artists 整合艺术家人气和能力的艺术品定价模式
IF 1.4 4区 数学
Asta-Advances in Statistical Analysis Pub Date : 2024-07-02 DOI: 10.1007/s10182-024-00504-3
Jinsu Park, Yoonjin Lee, Daewon Yang, Jongho Park, Hohyun Jung
{"title":"Artwork pricing model integrating the popularity and ability of artists","authors":"Jinsu Park,&nbsp;Yoonjin Lee,&nbsp;Daewon Yang,&nbsp;Jongho Park,&nbsp;Hohyun Jung","doi":"10.1007/s10182-024-00504-3","DOIUrl":"10.1007/s10182-024-00504-3","url":null,"abstract":"<div><p>Considerable research has been devoted to understanding the popularity effect on the art market dynamics, meaning that artworks by popular artists tend to have high prices. The hedonic pricing model has employed artists’ reputation attributes, such as survey results, to understand the popularity effect, but the reputation attributes are constant and not properly defined at the point of artwork sales. Moreover, the artist’s ability has been measured via random effect in the hedonic model, which fails to reflect ability changes. To remedy these problems, we present a method to define the popularity measure using the artwork sales dataset without relying on the artist’s reputation attributes. Also, we propose a novel pricing model to appropriately infer the time-dependent artist’s abilities using the presented popularity measure. An inference algorithm is presented using the EM algorithm and Gibbs sampling to estimate model parameters and artist abilities. We use the Artnet dataset to investigate the size of the rich-get-richer effect and the variables affecting artwork prices in real-world art market dynamics. We further conduct inferences about artists’ abilities under the popularity effect and examine how ability changes over time for various artists with remarkable interpretations.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"108 4","pages":"889 - 913"},"PeriodicalIF":1.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00504-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信