Nowcasting GDP using machine learning methods

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Dennis Kant, Andreas Pick, Jasper de Winter
{"title":"Nowcasting GDP using machine learning methods","authors":"Dennis Kant,&nbsp;Andreas Pick,&nbsp;Jasper de Winter","doi":"10.1007/s10182-024-00515-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper compares the ability of several econometric and machine learning methods to nowcast GDP in (pseudo) real-time. The analysis takes the example of Dutch GDP over the period 1992Q1–2018Q4 using a broad data set of monthly indicators. It discusses the forecast accuracy but also analyzes the use of information from the large data set of macroeconomic and financial predictors. We find that, on average, the random forest provides the most accurate forecast and nowcasts, whilst the dynamic factor model provides the most accurate backcasts.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 1","pages":"1 - 24"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00515-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00515-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper compares the ability of several econometric and machine learning methods to nowcast GDP in (pseudo) real-time. The analysis takes the example of Dutch GDP over the period 1992Q1–2018Q4 using a broad data set of monthly indicators. It discusses the forecast accuracy but also analyzes the use of information from the large data set of macroeconomic and financial predictors. We find that, on average, the random forest provides the most accurate forecast and nowcasts, whilst the dynamic factor model provides the most accurate backcasts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信