带有治愈子群的混合案例区间截尾数据分析的机器学习方法。

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Wisdom Aselisewine, Suvra Pal
{"title":"带有治愈子群的混合案例区间截尾数据分析的机器学习方法。","authors":"Wisdom Aselisewine, Suvra Pal","doi":"10.1007/s10182-025-00544-3","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a novel two-component framework for analyzing mixed case interval censored (MCIC) data featuring a cured subgroup. In such data, the time-to-event is known only within certain intervals determined by multiple random examination time points. Moreover, a portion of the subjects will never experience the event. The first component of our model focuses on estimating the likelihood of being cured (incidence), departing from the conventional generalized linear model to adopt a more adaptable support vector machine (SVM) approach capable of accommodating complex or non-linear covariate effects. The second component addresses the survival distribution of the uncured individuals (latency) and employs a Cox proportional hazards structure to maintain the straightforward interpretation of covariate effects. We develop an expectation maximization algorithm, incorporating the Platt scaling method, to estimate the probability of being cured. Our simulation study demonstrates that our model outperforms both logit-based and spline-based models in capturing complex classification boundaries, leading to more accurate estimates of cured/uncured probabilities and enhanced predictive accuracy for cure. We emphasize that enhancing the estimation accuracy regarding incidence subsequently improves the estimation outcomes concerning latency. Finally, we illustrate the efficacy of our methodology by applying it to the NASA's Hypobaric Decompression Sickness Data.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approach for Analyzing Mixed Case Interval Censored Data with a Cured Subgroup.\",\"authors\":\"Wisdom Aselisewine, Suvra Pal\",\"doi\":\"10.1007/s10182-025-00544-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a novel two-component framework for analyzing mixed case interval censored (MCIC) data featuring a cured subgroup. In such data, the time-to-event is known only within certain intervals determined by multiple random examination time points. Moreover, a portion of the subjects will never experience the event. The first component of our model focuses on estimating the likelihood of being cured (incidence), departing from the conventional generalized linear model to adopt a more adaptable support vector machine (SVM) approach capable of accommodating complex or non-linear covariate effects. The second component addresses the survival distribution of the uncured individuals (latency) and employs a Cox proportional hazards structure to maintain the straightforward interpretation of covariate effects. We develop an expectation maximization algorithm, incorporating the Platt scaling method, to estimate the probability of being cured. Our simulation study demonstrates that our model outperforms both logit-based and spline-based models in capturing complex classification boundaries, leading to more accurate estimates of cured/uncured probabilities and enhanced predictive accuracy for cure. We emphasize that enhancing the estimation accuracy regarding incidence subsequently improves the estimation outcomes concerning latency. Finally, we illustrate the efficacy of our methodology by applying it to the NASA's Hypobaric Decompression Sickness Data.</p>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10182-025-00544-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-025-00544-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新的双分量框架来分析具有治愈子群的混合病例间隔截除(MCIC)数据。在这些数据中,事件发生的时间仅在由多个随机检查时间点确定的一定间隔内已知。此外,一部分受试者将永远不会经历该事件。我们模型的第一个组成部分侧重于估计治愈的可能性(发病率),与传统的广义线性模型不同,采用适应性更强的支持向量机(SVM)方法,能够适应复杂或非线性协变量效应。第二个组成部分涉及未治愈个体的生存分布(潜伏期),并采用Cox比例风险结构来保持对协变量效应的直接解释。我们开发了一种期望最大化算法,结合Platt缩放法来估计治愈的概率。我们的模拟研究表明,我们的模型在捕获复杂分类边界方面优于基于对数和基于样条的模型,从而更准确地估计治愈/未治愈的概率,并提高了治愈的预测精度。我们强调,提高关于发生率的估计精度随后会改善关于延迟的估计结果。最后,我们通过将其应用于NASA的低压减压病数据来说明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Approach for Analyzing Mixed Case Interval Censored Data with a Cured Subgroup.

We introduce a novel two-component framework for analyzing mixed case interval censored (MCIC) data featuring a cured subgroup. In such data, the time-to-event is known only within certain intervals determined by multiple random examination time points. Moreover, a portion of the subjects will never experience the event. The first component of our model focuses on estimating the likelihood of being cured (incidence), departing from the conventional generalized linear model to adopt a more adaptable support vector machine (SVM) approach capable of accommodating complex or non-linear covariate effects. The second component addresses the survival distribution of the uncured individuals (latency) and employs a Cox proportional hazards structure to maintain the straightforward interpretation of covariate effects. We develop an expectation maximization algorithm, incorporating the Platt scaling method, to estimate the probability of being cured. Our simulation study demonstrates that our model outperforms both logit-based and spline-based models in capturing complex classification boundaries, leading to more accurate estimates of cured/uncured probabilities and enhanced predictive accuracy for cure. We emphasize that enhancing the estimation accuracy regarding incidence subsequently improves the estimation outcomes concerning latency. Finally, we illustrate the efficacy of our methodology by applying it to the NASA's Hypobaric Decompression Sickness Data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信