{"title":"带有治愈子群的混合案例区间截尾数据分析的机器学习方法。","authors":"Wisdom Aselisewine, Suvra Pal","doi":"10.1007/s10182-025-00544-3","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a novel two-component framework for analyzing mixed case interval censored (MCIC) data featuring a cured subgroup. In such data, the time-to-event is known only within certain intervals determined by multiple random examination time points. Moreover, a portion of the subjects will never experience the event. The first component of our model focuses on estimating the likelihood of being cured (incidence), departing from the conventional generalized linear model to adopt a more adaptable support vector machine (SVM) approach capable of accommodating complex or non-linear covariate effects. The second component addresses the survival distribution of the uncured individuals (latency) and employs a Cox proportional hazards structure to maintain the straightforward interpretation of covariate effects. We develop an expectation maximization algorithm, incorporating the Platt scaling method, to estimate the probability of being cured. Our simulation study demonstrates that our model outperforms both logit-based and spline-based models in capturing complex classification boundaries, leading to more accurate estimates of cured/uncured probabilities and enhanced predictive accuracy for cure. We emphasize that enhancing the estimation accuracy regarding incidence subsequently improves the estimation outcomes concerning latency. Finally, we illustrate the efficacy of our methodology by applying it to the NASA's Hypobaric Decompression Sickness Data.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approach for Analyzing Mixed Case Interval Censored Data with a Cured Subgroup.\",\"authors\":\"Wisdom Aselisewine, Suvra Pal\",\"doi\":\"10.1007/s10182-025-00544-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a novel two-component framework for analyzing mixed case interval censored (MCIC) data featuring a cured subgroup. In such data, the time-to-event is known only within certain intervals determined by multiple random examination time points. Moreover, a portion of the subjects will never experience the event. The first component of our model focuses on estimating the likelihood of being cured (incidence), departing from the conventional generalized linear model to adopt a more adaptable support vector machine (SVM) approach capable of accommodating complex or non-linear covariate effects. The second component addresses the survival distribution of the uncured individuals (latency) and employs a Cox proportional hazards structure to maintain the straightforward interpretation of covariate effects. We develop an expectation maximization algorithm, incorporating the Platt scaling method, to estimate the probability of being cured. Our simulation study demonstrates that our model outperforms both logit-based and spline-based models in capturing complex classification boundaries, leading to more accurate estimates of cured/uncured probabilities and enhanced predictive accuracy for cure. We emphasize that enhancing the estimation accuracy regarding incidence subsequently improves the estimation outcomes concerning latency. Finally, we illustrate the efficacy of our methodology by applying it to the NASA's Hypobaric Decompression Sickness Data.</p>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12514071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10182-025-00544-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-025-00544-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Machine Learning Approach for Analyzing Mixed Case Interval Censored Data with a Cured Subgroup.
We introduce a novel two-component framework for analyzing mixed case interval censored (MCIC) data featuring a cured subgroup. In such data, the time-to-event is known only within certain intervals determined by multiple random examination time points. Moreover, a portion of the subjects will never experience the event. The first component of our model focuses on estimating the likelihood of being cured (incidence), departing from the conventional generalized linear model to adopt a more adaptable support vector machine (SVM) approach capable of accommodating complex or non-linear covariate effects. The second component addresses the survival distribution of the uncured individuals (latency) and employs a Cox proportional hazards structure to maintain the straightforward interpretation of covariate effects. We develop an expectation maximization algorithm, incorporating the Platt scaling method, to estimate the probability of being cured. Our simulation study demonstrates that our model outperforms both logit-based and spline-based models in capturing complex classification boundaries, leading to more accurate estimates of cured/uncured probabilities and enhanced predictive accuracy for cure. We emphasize that enhancing the estimation accuracy regarding incidence subsequently improves the estimation outcomes concerning latency. Finally, we illustrate the efficacy of our methodology by applying it to the NASA's Hypobaric Decompression Sickness Data.
期刊介绍:
AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.