超越灾难性支付:基于内生选择的家庭医疗支出分担模型

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Antonello Maruotti, Pierfrancesco Alaimo Di Loro, Cathleen Johnson
{"title":"超越灾难性支付:基于内生选择的家庭医疗支出分担模型","authors":"Antonello Maruotti,&nbsp;Pierfrancesco Alaimo Di Loro,&nbsp;Cathleen Johnson","doi":"10.1007/s10182-024-00519-w","DOIUrl":null,"url":null,"abstract":"<div><p>The primary purpose of this paper is to assess households’ burden due to out-of-pocket healthcare expenditures. These payments are modeled on a representative sample of 25668 Italian households as the fraction of out-of-pocket healthcare expenditures over the households’ capacity to pay. For this purpose, we propose extending the analysis of the so-called catastrophic payments by looking at the entire distribution of this ratio. We introduce a novel finite mixture regression able to capture different levels of heterogeneity in the data. By using such a model specification, the fairness of the Italian National Health Service and its determinants are investigated.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 2","pages":"363 - 386"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond catastrophic payments: modeling household health expenditure shares with endogenous selection\",\"authors\":\"Antonello Maruotti,&nbsp;Pierfrancesco Alaimo Di Loro,&nbsp;Cathleen Johnson\",\"doi\":\"10.1007/s10182-024-00519-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primary purpose of this paper is to assess households’ burden due to out-of-pocket healthcare expenditures. These payments are modeled on a representative sample of 25668 Italian households as the fraction of out-of-pocket healthcare expenditures over the households’ capacity to pay. For this purpose, we propose extending the analysis of the so-called catastrophic payments by looking at the entire distribution of this ratio. We introduce a novel finite mixture regression able to capture different levels of heterogeneity in the data. By using such a model specification, the fairness of the Italian National Health Service and its determinants are investigated.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\"109 2\",\"pages\":\"363 - 386\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-024-00519-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00519-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是评估家庭的负担,因为自付医疗费用。这些支付以25668个意大利家庭的代表性样本为模型,作为自付医疗保健支出占家庭支付能力的比例。为此目的,我们建议通过观察这一比率的整个分布来扩大对所谓灾难性支付的分析。我们引入了一种新的有限混合回归,能够捕捉数据中不同程度的异质性。通过使用这种模型规范,对意大利国家卫生服务的公平性及其决定因素进行了调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond catastrophic payments: modeling household health expenditure shares with endogenous selection

The primary purpose of this paper is to assess households’ burden due to out-of-pocket healthcare expenditures. These payments are modeled on a representative sample of 25668 Italian households as the fraction of out-of-pocket healthcare expenditures over the households’ capacity to pay. For this purpose, we propose extending the analysis of the so-called catastrophic payments by looking at the entire distribution of this ratio. We introduce a novel finite mixture regression able to capture different levels of heterogeneity in the data. By using such a model specification, the fairness of the Italian National Health Service and its determinants are investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信