分级数据两种混合模型的等价性

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Matteo Ventura, Ambra Macis, Marica Manisera, Paola Zuccolotto
{"title":"分级数据两种混合模型的等价性","authors":"Matteo Ventura,&nbsp;Ambra Macis,&nbsp;Marica Manisera,&nbsp;Paola Zuccolotto","doi":"10.1007/s10182-024-00513-2","DOIUrl":null,"url":null,"abstract":"<div><p>Questionnaires are useful tool for exploring respondents’ perceptions through ratings, assumed to result from a latent decision process (DP). The DP varies when respondents rate on Likert or Semantic Differential scales. A possible paradigm to formalize the DP is based on the presence of a feeling and an uncertainty latent component, originally proposed as the foundations of the CUB (Combination of Uniform and shifted Binomial) class. It can be assumed that with Likert scales, respondents begin reasoning from the bottom, progressing upwards based on their sensations. Conversely, Semantic Differential scale users are assumed to start from the middle and move either upward or downward. The CUM (Combination of Uniform and Multinomial), a new model in the CUB class, derived from this DP, analyzes rating data on a Semantic Differential scale. This paper defines the concept of local and global unidirectional equivalence and studies, from an analytical point of view, the conditions under which CUB and CUM models generate identical theoretical probabilities, in order to enhance the interpretative understanding of the models.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 2","pages":"387 - 411"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the equivalence of two mixture models for rating data\",\"authors\":\"Matteo Ventura,&nbsp;Ambra Macis,&nbsp;Marica Manisera,&nbsp;Paola Zuccolotto\",\"doi\":\"10.1007/s10182-024-00513-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Questionnaires are useful tool for exploring respondents’ perceptions through ratings, assumed to result from a latent decision process (DP). The DP varies when respondents rate on Likert or Semantic Differential scales. A possible paradigm to formalize the DP is based on the presence of a feeling and an uncertainty latent component, originally proposed as the foundations of the CUB (Combination of Uniform and shifted Binomial) class. It can be assumed that with Likert scales, respondents begin reasoning from the bottom, progressing upwards based on their sensations. Conversely, Semantic Differential scale users are assumed to start from the middle and move either upward or downward. The CUM (Combination of Uniform and Multinomial), a new model in the CUB class, derived from this DP, analyzes rating data on a Semantic Differential scale. This paper defines the concept of local and global unidirectional equivalence and studies, from an analytical point of view, the conditions under which CUB and CUM models generate identical theoretical probabilities, in order to enhance the interpretative understanding of the models.</p></div>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":\"109 2\",\"pages\":\"387 - 411\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-024-00513-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00513-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

问卷是有用的工具,探索受访者的看法通过评级,假设结果从一个潜在的决策过程(DP)。当被调查者在李克特或语义差异量表上评分时,DP会有所不同。将DP形式化的一个可能范例是基于感觉和不确定性潜在成分的存在,最初被提议作为CUB(统一和转移二项组合)类的基础。可以假设,在李克特量表中,被调查者从底部开始推理,根据他们的感觉向上发展。相反,假设语义差异量表的用户从中间开始,向上或向下移动。在此基础上衍生出了CUB类中的新模型CUM (combined of Uniform and Multinomial),该模型在语义差异尺度上分析评级数据。本文定义了局部和全局单向等价的概念,并从分析的角度研究了CUB和CUM模型产生相同理论概率的条件,以增强对模型的解释性理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the equivalence of two mixture models for rating data

On the equivalence of two mixture models for rating data

Questionnaires are useful tool for exploring respondents’ perceptions through ratings, assumed to result from a latent decision process (DP). The DP varies when respondents rate on Likert or Semantic Differential scales. A possible paradigm to formalize the DP is based on the presence of a feeling and an uncertainty latent component, originally proposed as the foundations of the CUB (Combination of Uniform and shifted Binomial) class. It can be assumed that with Likert scales, respondents begin reasoning from the bottom, progressing upwards based on their sensations. Conversely, Semantic Differential scale users are assumed to start from the middle and move either upward or downward. The CUM (Combination of Uniform and Multinomial), a new model in the CUB class, derived from this DP, analyzes rating data on a Semantic Differential scale. This paper defines the concept of local and global unidirectional equivalence and studies, from an analytical point of view, the conditions under which CUB and CUM models generate identical theoretical probabilities, in order to enhance the interpretative understanding of the models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信