Hidden-Markov models for ordinal time series

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Christian H. Weiß, Osama Swidan
{"title":"Hidden-Markov models for ordinal time series","authors":"Christian H. Weiß,&nbsp;Osama Swidan","doi":"10.1007/s10182-024-00514-1","DOIUrl":null,"url":null,"abstract":"<div><p>A common approach for modeling categorical time series is Hidden-Markov models (HMMs), where the actual observations are assumed to depend on hidden states in their behavior and transitions. Such categorical HMMs are even applicable to nominal data but suffer from a large number of model parameters. In the ordinal case, however, the natural order among the categorical outcomes offers the potential to reduce the number of parameters while improving their interpretability at the same time. The class of ordinal HMMs proposed in this article link a latent-variable approach with categorical HMMs. They are characterized by parametric parsimony and allow the easy calculation of relevant stochastic properties, such as marginal and bivariate probabilities. These points are illustrated by numerical examples and simulation experiments, where the performance of maximum likelihood estimation is analyzed in finite samples. The developed methodology is applied to real-world data from a health application.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 2","pages":"217 - 239"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00514-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00514-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

A common approach for modeling categorical time series is Hidden-Markov models (HMMs), where the actual observations are assumed to depend on hidden states in their behavior and transitions. Such categorical HMMs are even applicable to nominal data but suffer from a large number of model parameters. In the ordinal case, however, the natural order among the categorical outcomes offers the potential to reduce the number of parameters while improving their interpretability at the same time. The class of ordinal HMMs proposed in this article link a latent-variable approach with categorical HMMs. They are characterized by parametric parsimony and allow the easy calculation of relevant stochastic properties, such as marginal and bivariate probabilities. These points are illustrated by numerical examples and simulation experiments, where the performance of maximum likelihood estimation is analyzed in finite samples. The developed methodology is applied to real-world data from a health application.

有序时间序列的隐马尔可夫模型
对分类时间序列建模的一种常用方法是隐马尔可夫模型(hmm),在这种模型中,假设实际观测值依赖于其行为和转换中的隐藏状态。这种分类hmm甚至适用于标称数据,但受到大量模型参数的影响。然而,在有序的情况下,分类结果之间的自然顺序提供了减少参数数量的潜力,同时提高了它们的可解释性。本文提出的有序hmm类将潜在变量方法与分类hmm联系起来。它们的特点是参数简洁,并允许容易计算相关的随机性质,如边际和二元概率。通过数值算例和仿真实验,分析了有限样本下最大似然估计的性能。所开发的方法应用于来自健康应用程序的实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信