{"title":"Design and Fabrication of Indium Tin Oxide Based Thin Film Piezoresistive Pressure Sensor","authors":"S. Mala, H. K. E. Latha, A. Udayakumar","doi":"10.1007/s40799-023-00695-5","DOIUrl":"10.1007/s40799-023-00695-5","url":null,"abstract":"<div><p>The design and development of Indium Tin Oxide (ITO) thin film based piezoresistive pressure sensor is presented in this paper. ITO (90:10) nanoparticles were synthesized by green combustion method using indium and tin as precursors and, carica papaya seed extract as fuel. ITO (90:10) thin film piezoresistors were deposited using synthesized nanoparticles on AlN coated circular steel (SS 304) diaphragm using E-beam evaporation technique. Diaphragm models of different thickness (0.75, 1 and 1.25 mm) were created using ANSYS finite element analysis in order to determine the maximum stress and deflection region for applied pressure of 1 to 10 bar. ANSYS results exhibited that maximum stress and deflection occurred at the center and circumference of diaphragm. ITO thin film piezoresistors were deposited at these regions using mechanical mask. TiW metal contact was established to these ITO thin film piezoresistors using DC sputtering method. ITO thin film piezoresistive pressure sensor with TiW contact connected in Wheatstone full bridge configuration was calibrated and tested for 50 pressure cycles by applying 2 V DC supply. Sensitivity (S) of the developed ITO thin film pressure sensor was obtained as 0.686, 0.566 and 0.495 mV/bar for diaphragm thickness of 0.75, 1, and 1.25 mm pressure sensors respectively. The non-linearity (NLi) in the output response of the pressure sensors was found to be 9.14, 9.82 and 11.27% for diaphragm thickness of 0.75, 1, and 1.25 mm respectively. Hysteresis errors were found to be 0.0344, 0.0525 and 0.054 for diaphragm thickness of 0.75, 1, and 1.25 mm respectively.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 5","pages":"761 - 773"},"PeriodicalIF":1.5,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40799-023-00695-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139373253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Investigation of the Effects of Parameters on the Development of Nuggets and the Tensile Properties of IN-625 During Resistance Spot Welding","authors":"A. Mashhuriazar, S. E. Mirsalehi, K. Moradi","doi":"10.1007/s40799-023-00692-8","DOIUrl":"10.1007/s40799-023-00692-8","url":null,"abstract":"<div><p>A thermomechanical finite element (FE) model was used to examine the effects of resistance spot welding (RSW) current intensity, time, and electrode force on the distribution of temperatures and the size of nuggets of IN-625 superalloy sheets. In order to evaluate and optimize the mechanical properties of RSW welded IN-625 alloy, a procedure was developed based on simulation results. A taguchi L9 experimental design was used to study the mechanical properties of welded samples as a function of peak load, failure mode, and energy. According to the findings, joint fracture modes and strength are significantly influenced by process parameters. Consequently, welding current, electrode force, and welding time all had significant impacts on the shear strength of IN-625 Alloy spot welding joints, with impacts of 62.05%, 24.06%, and 12.84%, respectively.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"735 - 745"},"PeriodicalIF":1.5,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and Numerical Assessment of Flatwise Compression Behaviors of Sandwich Panels: Comparison Between Aluminum, Innegra Fiber and Glass/Epoxy New Symmetric Lattice Cores","authors":"H. Norouzi, M. Mahmoodi","doi":"10.1007/s40799-023-00694-6","DOIUrl":"10.1007/s40799-023-00694-6","url":null,"abstract":"<div><p>The sandwich panels are widely used in many industrial applications due to their high mechanical properties. Their core design is most important parameter in enhancing their mechanical strength. Flexibility in the design of the core structure leads to the achievement of high strength and light structures. In this paper, the results of the optimized geometry in the previous work are used to investigate the capability of the core geometry design with different materials. Therefore, using the different materials, the peak enhancement of strength-to-weight ratio in sandwich panels besides core behavior during pressure testing are investigated. To this end, a new lattice core is brought forth as the first level; then, three types of materials including <i>AL3105</i>, glass, and innegra fiber/epoxy composites are used to fabricate the cores, in order to compare the compressive strength and the peak. The Nano-clay cloisite <i>20A</i> is also utilized in construction of sandwich panels. The result indicates that the <i>AL3105</i> lattice core has the highest strength-to-weight ratio, while the innegra fiber composite core has the highest toughness. Applying curve studies and the <i>SEM </i>Fig. 13, it is concluded that the addition of Nano-clay to composites leads to an increase in both of the strain and the core strength. Comparing the results of experimental and finite element modeling (FEM) data (in <i>ABAQUS</i> software) represented that there is a suitable compliance between them. Our results with the positional variation in core design can pave way in designing advanced engineered sandwich structures in aerospace, shipping, automotive industries. Therefore, these structures will have wide applications in the field of light structure, heat and fluid transfer, sound and vibration control.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"721 - 734"},"PeriodicalIF":1.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138950952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. You, X. S. Gao, B. Thoen, C. French, E. Cosgriff, P. Bergson
{"title":"Cascade Control Method for Conducting Hybrid Simulation with Stiff Specimens","authors":"S. You, X. S. Gao, B. Thoen, C. French, E. Cosgriff, P. Bergson","doi":"10.1007/s40799-023-00689-3","DOIUrl":"10.1007/s40799-023-00689-3","url":null,"abstract":"<div><p>Hybrid simulation is an innovative method that combines an analysis model of a structural system with physical tests of one or more substructures. The analysis model is typically a finite element analysis (FEA) model that outputs displacements applied to the physical substructure using a control system operated in displacement control. For stiff specimens, the displacement commands can be so small that the control system has difficulty imposing the command displacements accurately. To do hybrid simulation with a stiff specimen, force control is desirable. Cascade control, which features two layers of closed loop control, is proposed to address this issue. The inner control loop has force control mode that provides accurate control for hybrid tests with stiff specimens. The outer control loop is in displacement control mode for accepting displacement commands from an FEA model. The effectiveness of the cascade control method in conducting hybrid simulation of stiff test specimens was evaluated with three sets of tests. For each set of tests, the results of both cascade control and displacement control methods were compared. The three test cases covered a wide range of variation from specimen size, test equipment, model type (2-D vs. 3-D), experimental element type (beam-column vs. truss), and test speed (slowdown 10 times in Test Case 1 and 2 versus 100 times in Test Case 3). In all cases, cascade control proved to be an effective method for conducting hybrid simulation with a stiff specimen.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"709 - 720"},"PeriodicalIF":1.5,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138630952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analyzing the Contraction Force of Artificial Muscles Under Negative Pressure Actuation","authors":"Z. Wu, P. Zhao, J. Lei","doi":"10.1007/s40799-023-00686-6","DOIUrl":"10.1007/s40799-023-00686-6","url":null,"abstract":"<div><p>Artificial muscles actuated by negative pressure offer significant benefits over those driven by positive pressure, such as high contraction ratios and improved safety, making them a promising option for various applications. This paper studies the contraction force characteristic of a bellows-like artificial muscle actuated by negative pressure. Initially, the structure, fabrication, and working principle of the artificial muscle were introduced. Subsequently, based on the force balance method, the contraction force was decomposed as the forces acted by the difference value of the inner and the outer pressures on the end plate, and the tension force derived from the adjacent contraction unit. To reduce complexity, the contraction process was divided into three phases according to the distinct contact conditions of the contraction units: uncontacted, locally contacted, and fully contacted with crests. The deformations of the contraction units in each phase were analyzed, and the corresponding contraction forces were derived. An experiment platform was constructed to test the force by changing the dimension parameters and pressure, obtaining the output force data during isobaric contraction. Finally, a comparison of the experimental and calculated results substantiated the aptness of the theorem model.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"693 - 707"},"PeriodicalIF":1.5,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Extracting Stress–Strain Curves of Porous Multi-Phase Sintered Steels by Microindentation","authors":"Z. Tomić, T. Jarak, B. Pavlović, Z. Tonković","doi":"10.1007/s40799-023-00684-8","DOIUrl":"10.1007/s40799-023-00684-8","url":null,"abstract":"<div><p>The efficient characterization of material properties of porous multi-phase sintered steels by instrumental indentation is still an open question. To the authors’ knowledge, so far only a characterization of single-phase porous sintered steel by nanoindenation has been reported in literature. This paper for the first time offers a study about the applicability of microindentation techniques for characterizing the matrix material in a multi-phase sintered steel. This preliminary study is motivated by the relatively wide availability of necessary equipment, and simplicity of material identification procedures.</p><p>Herein, a dual-phase ferrite/bainite Astaloy steel with 9% porosity is studied. Various commonly used methods for the reconstruction of stress–strain curves from microindentation data are considered, whereby both Vickers and spherical tips are used. In addition, some homogeneous solid materials are investigated to better asses the performance of applied identification procedures. Two approaches for the mesoscale identification of the considered sintered steel are attempted. The first one is based on the identification of individual material phases, while in the other one the homogenization of the metallic matrix is adopted. To assess the reliability of obtained parameters, the direct numerical simulation of representative volume elements of realistic steel microstructure subjected to uniaxial tension is conducted. Numerical results are compared with the data from the macroscopic uniaxial tensile test.</p><p>The obtained results indicate that microindentation is adequate for the identification of elastic properties of individual material phases, but results for local plastic parameters are largely inconclusive and a further analysis is needed, focusing on applying smaller forces and investigating the influence of pores on identification results. Nevertheless, it seems that macroscopic stress–strain curves could be captured more accurately by the methodology based on the matrix homogenization if relatively large indentation forces are applied.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"657 - 675"},"PeriodicalIF":1.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spot Joining of PVC to Aluminum Sheets via Cold Forward Extrusion","authors":"I.T. Abdullah, M.H. Ridha, M.K. Mejbel, S.K. Hussein","doi":"10.1007/s40799-023-00688-4","DOIUrl":"10.1007/s40799-023-00688-4","url":null,"abstract":"<div><p>An essential consideration for metal-polymer applications is that the sound joining of these materials is challenging due to a significant surface energy differential in different structural characteristics between polymer and metal. However, the joining methods have some drawbacks, such as low-reliability joints, long curing time, stress concentration, and polymer degradation. A new novel metal-polymer hybrid joining technique is proposed in this work to overcome these issues and cost perspectives, manufacturing, and overcoming the problem of PVC degradation due to heat generation of other joining methods. In this study, we managed to join PVC to AA5053 sheets using a cold joining technique based on extruding PVC through a conical hole of an aluminum specimen using a punching tool. Experiments consisted of three parameters (the hole diameter, plunging depth, and radius of the punch), with four levels for each parameter. The experiments were designed, and mechanical characterizations of the joints were optimized using the design of the experiment's method. The hole diameter was the effective parameter on the mechanical characterizations and dimensions of the extruded PVC. Increasing the diameter of the AA5053 sheet increased the maximum diameter of the extruded PVC, shear force, and pull-out force of the joints and decreased the shear stress of the joints. We obtained a maximum shear strength of 106.15 MPa, which is ~3 times higher than the tensile strength of PVC (37 MPa).</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"677 - 691"},"PeriodicalIF":1.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation on the Design and Application of Hydraulic Loading Fatigue Test Device for Non-Vascular Stent","authors":"Y. Li, J. Li, M. Mao, H. Yin, X. Ni, C. Pan","doi":"10.1007/s40799-023-00685-7","DOIUrl":"10.1007/s40799-023-00685-7","url":null,"abstract":"<div><h3>Background</h3><p>The implanted non-vascular stent is prone to fatigue fracture due to the periodic cyclic load caused by long-term physiological motion in the non-vascular lumen.</p><h3>Objective</h3><p>To effectively study and predict the fatigue performance of non-vascular stents, an experimental setup was designed to simulate and conduct fatigue performance tests on non-vascular stents under various loads. This design simplified the periodic cyclic loads generated within non-vascular lumens, in accordance with the physiological motion patterns of non-vascular lumens, into pulsatile loads.</p><h3>Methods</h3><p>To meet the requirements of different stents and various fluctuating load conditions during testing, the relationship between test conditions and the fatigue load of the stent was studied based on Fluent.</p><h3>Results</h3><p>A fatigue test device with a special load module was built and used to complete the fatigue performance test of a group of esophageal stents. It can be found that the experimental device can satisfy the control and application of the fatigue load of the stent, and can effectively realize the testing requirements of the fatigue performance of the stent.</p><h3>Conclusion</h3><p>In this paper, a non-vascular stent fatigue in vitro test device that can simulate the fluctuating load of a non-vascular lumen is designed. The results of flow field simulation, fatigue simulation, and actual fatigue test show that the device can meet the needs of fatigue test and has good versatility and operability.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"643 - 655"},"PeriodicalIF":1.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Modal Analysis and Operational Deflection Shape Analysis of a Cantilever Plate in a Wind Tunnel with Finite Element Model Verification","authors":"D. T. Will, W. D. Zhu","doi":"10.1007/s40799-023-00682-w","DOIUrl":"10.1007/s40799-023-00682-w","url":null,"abstract":"<div><p>This work explores the response of a cantilever plate attached to a cylinder in a wind tunnel under an impact excitation. A detailed computer-aided design (CAD) model and the finite element analysis (FEA) modal simulation of the experimental setup are introduced. Two experimental techniques are thoroughly discussed: an accelerometer-based experimental modal analysis (EMA) method, and a non-contact, full-field, high-speed digital image correlation (DIC)-based operational deflection shape (ODS) analysis method. The experimental and FEA results of the first seven natural frequencies, mode shapes, and ODSs of the cantilever plate are presented and compared. The percent differences between the EMA and FEA natural frequency results are less than 4.8%, and the modal assurance criterion (MAC) values between the EMA and FEA mode shapes are at least 0.845. The percent differences between the ODS analysis and FEA natural frequency results are less than 3.4%, while the MAC values between the ODS analysis ODSs and FEA mode shapes are at least 0.728. The percent differences between the EMA and ODS analysis natural frequency results are less than 3.5%, and the MAC values between the EMA mode shapes and ODS analysis ODSs are at least 0.505. There are two sets of two different mode shapes and ODSs with relatively high correlation. One set is a set of two closely spaced modes and ODSs approximately 20 Hz apart with obvious similarities in shape. The other set is a set of two modes and ODSs approximately 100 Hz apart that share less obvious similarities in shape.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 4","pages":"623 - 642"},"PeriodicalIF":1.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138529693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}