冷正向挤压PVC与铝板的现场连接

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
I.T. Abdullah, M.H. Ridha, M.K. Mejbel, S.K. Hussein
{"title":"冷正向挤压PVC与铝板的现场连接","authors":"I.T. Abdullah, M.H. Ridha, M.K. Mejbel, S.K. Hussein","doi":"10.1007/s40799-023-00688-4","DOIUrl":null,"url":null,"abstract":"<p>An essential consideration for metal-polymer applications is that the sound joining of these materials is challenging due to a significant surface energy differential in different structural characteristics between polymer and metal. However, the joining methods have some drawbacks, such as low-reliability joints, long curing time, stress concentration, and polymer degradation. A new novel metal-polymer hybrid joining technique is proposed in this work to overcome these issues and cost perspectives, manufacturing, and overcoming the problem of PVC degradation due to heat generation of other joining methods. In this study, we managed to join PVC to AA5053 sheets using a cold joining technique based on extruding PVC through a conical hole of an aluminum specimen using a punching tool. Experiments consisted of three parameters (the hole diameter, plunging depth, and radius of the punch), with four levels for each parameter. The experiments were designed, and mechanical characterizations of the joints were optimized using the design of the experiment's method. The hole diameter was the effective parameter on the mechanical characterizations and dimensions of the extruded PVC. Increasing the diameter of the AA5053 sheet increased the maximum diameter of the extruded PVC, shear force, and pull-out force of the joints and decreased the shear stress of the joints. We obtained a maximum shear strength of 106.15 MPa, which is ~3 times higher than the tensile strength of PVC (37 MPa).</p>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spot Joining of PVC to Aluminum Sheets via Cold Forward Extrusion\",\"authors\":\"I.T. Abdullah, M.H. Ridha, M.K. Mejbel, S.K. Hussein\",\"doi\":\"10.1007/s40799-023-00688-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An essential consideration for metal-polymer applications is that the sound joining of these materials is challenging due to a significant surface energy differential in different structural characteristics between polymer and metal. However, the joining methods have some drawbacks, such as low-reliability joints, long curing time, stress concentration, and polymer degradation. A new novel metal-polymer hybrid joining technique is proposed in this work to overcome these issues and cost perspectives, manufacturing, and overcoming the problem of PVC degradation due to heat generation of other joining methods. In this study, we managed to join PVC to AA5053 sheets using a cold joining technique based on extruding PVC through a conical hole of an aluminum specimen using a punching tool. Experiments consisted of three parameters (the hole diameter, plunging depth, and radius of the punch), with four levels for each parameter. The experiments were designed, and mechanical characterizations of the joints were optimized using the design of the experiment's method. The hole diameter was the effective parameter on the mechanical characterizations and dimensions of the extruded PVC. Increasing the diameter of the AA5053 sheet increased the maximum diameter of the extruded PVC, shear force, and pull-out force of the joints and decreased the shear stress of the joints. We obtained a maximum shear strength of 106.15 MPa, which is ~3 times higher than the tensile strength of PVC (37 MPa).</p>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40799-023-00688-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40799-023-00688-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属-聚合物应用的一个重要考虑因素是,由于聚合物和金属之间的不同结构特征存在显着的表面能差异,因此这些材料的良好连接具有挑战性。然而,这种连接方法存在连接可靠性低、固化时间长、应力集中、聚合物降解等缺点。本文提出了一种新型的金属-聚合物复合连接技术,以克服这些问题,从成本、制造和其他连接方法产生热量导致PVC降解的问题。在本研究中,我们使用冷连接技术将PVC连接到AA5053板材上,该技术基于使用冲压工具将PVC挤出铝试样的锥形孔。实验包括3个参数(孔径、冲切深度和冲床半径),每个参数设4个水平。采用实验设计方法,对关节力学特性进行了优化设计。孔直径是影响挤出聚氯乙烯力学特性和尺寸的有效参数。增大AA5053板材的直径可增大挤出PVC的最大直径,增大接头的剪切力和拉拔力,减小接头的剪切应力。得到的最大抗剪强度为106.15 MPa,是PVC抗拉强度(37 MPa)的3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spot Joining of PVC to Aluminum Sheets via Cold Forward Extrusion

Spot Joining of PVC to Aluminum Sheets via Cold Forward Extrusion

An essential consideration for metal-polymer applications is that the sound joining of these materials is challenging due to a significant surface energy differential in different structural characteristics between polymer and metal. However, the joining methods have some drawbacks, such as low-reliability joints, long curing time, stress concentration, and polymer degradation. A new novel metal-polymer hybrid joining technique is proposed in this work to overcome these issues and cost perspectives, manufacturing, and overcoming the problem of PVC degradation due to heat generation of other joining methods. In this study, we managed to join PVC to AA5053 sheets using a cold joining technique based on extruding PVC through a conical hole of an aluminum specimen using a punching tool. Experiments consisted of three parameters (the hole diameter, plunging depth, and radius of the punch), with four levels for each parameter. The experiments were designed, and mechanical characterizations of the joints were optimized using the design of the experiment's method. The hole diameter was the effective parameter on the mechanical characterizations and dimensions of the extruded PVC. Increasing the diameter of the AA5053 sheet increased the maximum diameter of the extruded PVC, shear force, and pull-out force of the joints and decreased the shear stress of the joints. We obtained a maximum shear strength of 106.15 MPa, which is ~3 times higher than the tensile strength of PVC (37 MPa).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信