BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.026781
Xiaojun Zhou, Mengxue Liu, Linlin Song
{"title":"Structural characterization of four Rhododendron spp. chloroplast genomes and comparative analyses with other azaleas","authors":"Xiaojun Zhou, Mengxue Liu, Linlin Song","doi":"10.32604/biocell.2023.026781","DOIUrl":"https://doi.org/10.32604/biocell.2023.026781","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77484615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.026049
Hongmei Wu, Di Li, Yuanyuan Huang, Ruyuan Liu, Xiaonian Zhu
{"title":"Research progress of protein phosphatase 2A in cellular autophagy","authors":"Hongmei Wu, Di Li, Yuanyuan Huang, Ruyuan Liu, Xiaonian Zhu","doi":"10.32604/biocell.2023.026049","DOIUrl":"https://doi.org/10.32604/biocell.2023.026049","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72535110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.027308
Li Chen, Fangfang Li, Shouyan Cao, Xia Li, Chao Zhou, Sai Han, Youzhong Zhang
{"title":"RASAL2 acts as a tumor suppressor in cervical cancer cells","authors":"Li Chen, Fangfang Li, Shouyan Cao, Xia Li, Chao Zhou, Sai Han, Youzhong Zhang","doi":"10.32604/biocell.2023.027308","DOIUrl":"https://doi.org/10.32604/biocell.2023.027308","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72700349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring exosomes to provide evidence for the treatment and prediction of Alzheimer’s disease","authors":"XIANGYU QUAN, XUETING MA, GUODONG LI, XUEQI FU, JIANGTAO LI, LINLIN ZENG","doi":"10.32604/biocell.2023.031226","DOIUrl":"https://doi.org/10.32604/biocell.2023.031226","url":null,"abstract":"Exosomes are extracellular vesicles with a 30–150 nm diameter originating from endosomes. In recent years, scientists have regarded exosomes as an ideal small molecule carrier for the targeted treatment of Alzheimer’s disease (AD) across the blood-brain barrier due to their nanoscale size and low immunogenicity. A large amount of evidence shows that exosomes are rich in biomarkers, and it has been found that the changes in biomarker content in blood, cerebrospinal fluid, and urine are often associated with the onset of AD patients. In this paper, some recent advances in the use of exosomes in the treatment of AD are reviewed, and various exosome markers and some latest detection methods are summarized to provide some evidence for the detection or treatment of AD by exosomes.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135504583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.029373
HUI LI, CHENGFANG ZHOU, MEI KUANG, YUN LIU, JIEPING CHEN
{"title":"The role of FZR1 in tumorigenesis: Focus on cell-cycle control","authors":"HUI LI, CHENGFANG ZHOU, MEI KUANG, YUN LIU, JIEPING CHEN","doi":"10.32604/biocell.2023.029373","DOIUrl":"https://doi.org/10.32604/biocell.2023.029373","url":null,"abstract":"Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promoting complex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlight recent work that has studied the role of FZR1 in tumorigenesis, growth, differentiation, and genome stability through cell-cycle control. We summarize the current state of knowledge regarding FZR1 structure, function, and the distinct ways of APC/C dysregulation in solid tumors and hematologic malignancies. We also discuss novel approaches for targeting the FZR1 as a cancer therapy and research area for future work.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135505236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.030796
ZHAOXU YAO, HAIBIN MA, LIN LIU, QIAN ZHAO, LONGCHAO QIN, XUEYAN REN, CHUANJUN WU, KAILI SUN
{"title":"Novel defined N7-methylguanosine modification-related lncRNAs for predicting the prognosis of laryngeal squamous cell carcinoma","authors":"ZHAOXU YAO, HAIBIN MA, LIN LIU, QIAN ZHAO, LONGCHAO QIN, XUEYAN REN, CHUANJUN WU, KAILI SUN","doi":"10.32604/biocell.2023.030796","DOIUrl":"https://doi.org/10.32604/biocell.2023.030796","url":null,"abstract":"<b>Objective:</b> Through integrated bioinformatics analysis, the goal of this work was to find new, characterised N7-methylguanosine modification-related long non-coding RNAs (m7G-lncRNAs) that might be used to predict the prognosis of laryngeal squamous cell carcinoma (LSCC). <b>Methods:</b> The clinical data and LSCC gene expression data for the current investigation were initially retrieved from the TCGA database & sanitised. Then, using co-expression analysis of m7G-associated mRNAs & lncRNAs & differential expression analysis (DEA) among LSCC & normal sample categories, we discovered lncRNAs that were connected to m7G. The prognosis prediction model was built for the training category using univariate & multivariate COX regression & LASSO regression analyses, & the model’s efficacy was checked against the test category data. In addition, we conducted DEA of prognostic m7G-lncRNAs among LSCC & normal sample categories & compiled a list of co-expression networks & the structure of prognosis m7G-lncRNAs. To compare the prognoses for individuals with LSCC in the high- & low-risk categories in the prognosis prediction model, survival and risk assessments were also carried out. Finally, we created a nomogram to accurately forecast the outcomes of LSCC patients & created receiver operating characteristic (ROC) curves to assess the prognosis prediction model’s predictive capability. <b>Results:</b> Using co-expression network analysis & differential expression analysis, we discovered 774 m7G-lncRNAs and 551 DEm7G-lncRNAs, respectively. We then constructed a prognosis prediction model for six m7G-lncRNAs (<i>FLG−AS1</i>, <i>RHOA−IT1</i>, <i>AC020913.3</i>, <i>AC027307.2</i>, <i>AC010973.2</i> and <i>AC010789.1</i>), identified 32 DEPm7G-lncRNAs, analyzed the correlation between 32 DEPm7G-lncRNAs and 13 DEPm7G-mRNAs, and performed survival analyses and risk analyses of the prognosis prediction model to assess the prognostic performance of LSCC patients. By displaying ROC curves and a nomogram, we finally checked the prognosis prediction model's accuracy. <b>Conclusion:</b> By creating novel predictive lncRNA signatures for clinical diagnosis & therapy, our findings will contribute to understanding the pathogenetic process of LSCC.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135755380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.024738
Linshen Xie, Qiaolan Wang, Jingxuan Ma, Ye Zeng
{"title":"Hypoxia-induced reactive oxygen species in organ and tissue fibrosis","authors":"Linshen Xie, Qiaolan Wang, Jingxuan Ma, Ye Zeng","doi":"10.32604/biocell.2023.024738","DOIUrl":"https://doi.org/10.32604/biocell.2023.024738","url":null,"abstract":"Fibrosis is the end-stage change of damaged tissues in various human diseases, which can lead to permanent scarring or organ malfunction. Hypoxia leads to oxidative stress, mitochondrial dysfunction, and inflammation in dysfunctional organs and tissues. Oxidative stress resulting from the overproduction of reactive oxygen species plays a central role in the fibrosis of injured organs. This review addresses the updated knowledge of the relationship between hypoxia and tissue fibrosis mediated by the reactive oxygen species pathway. Moreover, novel anti-fibrotic strategies are discussed, which may suppress reactive oxygen species and organ fibrosis.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86868506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.029272
Mohamad Zulkeflee Sabri, J. Bojarska, Fai-Chu Wong, Tsun-Thai Chai
{"title":"Molecular dynamics-driven exploration of peptides targeting SARS-CoV-2, with special attention on ACE2, S protein, Mpro, and PLpro: A review","authors":"Mohamad Zulkeflee Sabri, J. Bojarska, Fai-Chu Wong, Tsun-Thai Chai","doi":"10.32604/biocell.2023.029272","DOIUrl":"https://doi.org/10.32604/biocell.2023.029272","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90630938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiocellPub Date : 2023-01-01DOI: 10.32604/biocell.2023.026161
Wei Xia, N. Yang, Xiaoyan Feng, Ting Xin, Yongle Jing, Yuming Li, Chengzhi Lu
{"title":"UCK2 promotes the proliferation, migration, and invasion of trophoblast cells in preeclampsia by activating the STAT3 pathway","authors":"Wei Xia, N. Yang, Xiaoyan Feng, Ting Xin, Yongle Jing, Yuming Li, Chengzhi Lu","doi":"10.32604/biocell.2023.026161","DOIUrl":"https://doi.org/10.32604/biocell.2023.026161","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89789435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}