Biocybernetics and Biomedical Engineering最新文献

筛选
英文 中文
Lead II electrocardiograph-derived entropy index for autonomic function assessment in type 2 diabetes mellitus 用于评估 2 型糖尿病患者自主神经功能的导联 II 心电图熵指数
IF 5.3 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-07-01 DOI: 10.1016/j.bbe.2024.08.002
Shanglin Yang , Xuwei Liao , Yuyang Lin , Jianjung Chen , Hsientsai Wu
{"title":"Lead II electrocardiograph-derived entropy index for autonomic function assessment in type 2 diabetes mellitus","authors":"Shanglin Yang ,&nbsp;Xuwei Liao ,&nbsp;Yuyang Lin ,&nbsp;Jianjung Chen ,&nbsp;Hsientsai Wu","doi":"10.1016/j.bbe.2024.08.002","DOIUrl":"10.1016/j.bbe.2024.08.002","url":null,"abstract":"<div><p>The aim of this study was to introduce and evaluate the baroreflex entropy index (BEI), a novel tool derived from standard lead II electrocardiograph (EKG) for autonomic function (AF) assessment in type 2 diabetes mellitus (T2DM). Researchers with distinct roles (analysis and data preparation) analyzed anonymized EKG data from healthy controls and two patient groups with T2DM (well controlled and poorly controlled). BEI was compared between groups, and correlations with glycemic markers (HbA1c, fasting glucose) were investigated. Logistic regression was used to assess the association between BEI and T2DM risk. BEI showed good repeatability and differentiation between groups. Notably, it required only single-lead EKG. BEI was inversely correlated with glycemic markers, suggesting improved baroreflex regulation with better glycemic control. BEI also outperformed small-scale multiscale entropy in group discrimination. Logistic regression identified BEI as a protective factor for T2DM. BEI represents a promising tool for monitoring AF, assessing glycemic control, and potentially stratifying T2DM risk. Further validation in larger longitudinal studies and an exploration of the applicability of BEI to other diseases are warranted.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 513-520"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative design addressing complex airway stenosis: Multidimensional performance assessment of a novel Y-shaped airway stent 解决复杂气道狭窄的创新设计:新型 Y 型气道支架的多维性能评估
IF 5.3 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-07-01 DOI: 10.1016/j.bbe.2024.08.010
Yuyue Jiang , Qungang Shan , Wei Huang , Nannan Yang , Yaping Zhuang , Zhuozhuo Wu , Lu Wang , Zhongmin Wang
{"title":"Innovative design addressing complex airway stenosis: Multidimensional performance assessment of a novel Y-shaped airway stent","authors":"Yuyue Jiang ,&nbsp;Qungang Shan ,&nbsp;Wei Huang ,&nbsp;Nannan Yang ,&nbsp;Yaping Zhuang ,&nbsp;Zhuozhuo Wu ,&nbsp;Lu Wang ,&nbsp;Zhongmin Wang","doi":"10.1016/j.bbe.2024.08.010","DOIUrl":"10.1016/j.bbe.2024.08.010","url":null,"abstract":"<div><p>“Y-shaped” airway stents have been widely used in the treatment of airway diseases, especially airway stenosis, due to their excellent flexibility. However, the current research on the flexibility of “Y-shaped” airway stents is still blank, limiting the possibility of improving the performance of stents in complex clinical disease. This study aimed to establish multi-dimensional evaluation of the flexibility of a novel segmented “Y-shaped” airway stent and two kinds of conventional stents. We evaluated the flexibility of the segmented stent, wholly knitted stent, and silicone stent by in vitro mechanical testing and finite element analysis methods. That is, the bending force and spring-back force of three kinds of stent were measured in left–right, anterior-posterior and longitudinal directions. The torque of the stents in torsion-recovery test of branches of stent was also executed. Finite element analysis was performed to evaluate the change of diameter. According to the detection, the bending force and spring-back force of the branch of the segmented stent during left–right and anterior-posterior compression, and the torque during torsion and recovery were lower than those of the other two stents. In finite element analysis, the diameter change of the segmented stent was minimal among the three stents. The flexibility of the segmented “Y-shaped” airway stent was better than that of the conventional “Y-shaped” airway stents, indicating that it has better adaptability and resistance to compression when implanted in the body.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 534-542"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early diagnosis of Parkinson’s disease using a hybrid method of least squares support vector regression and fuzzy clustering 使用最小二乘支持向量回归和模糊聚类的混合方法早期诊断帕金森病
IF 5.3 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-07-01 DOI: 10.1016/j.bbe.2024.08.009
Hossein Ahmadi , Lin Huo , Goli Arji , Abbas Sheikhtaheri , Shang-Ming Zhou
{"title":"Early diagnosis of Parkinson’s disease using a hybrid method of least squares support vector regression and fuzzy clustering","authors":"Hossein Ahmadi ,&nbsp;Lin Huo ,&nbsp;Goli Arji ,&nbsp;Abbas Sheikhtaheri ,&nbsp;Shang-Ming Zhou","doi":"10.1016/j.bbe.2024.08.009","DOIUrl":"10.1016/j.bbe.2024.08.009","url":null,"abstract":"<div><p>Parkinson’s disease (PD) is a neurodegenerative disorder that influence brain’s neurological, behavioral, and physiological functions and includes motor and nonmotor manifestations. Although there have been several PD diagnosis systems with supervised machine learning techniques, there are more efforts that need to enhance the accurate detection of PD in its early stage. The current paper developed a novel approach by integrating Least Squares Support Vector Regression (LS-SVR) and Fuzzy Clustering for Unified Parkinson’s Disease Rating Scale (UPDRS) diagnosis. This paper used feature selection and Principal Component Analysis (PCA) to overcome the multicollinearity issues in data. This paper used a large medical dataset including Motor- and Total-UPDRS to demonstrate how the proposed method can improve prediction performance via extensive evaluations and comparisons with existing methods. Compared to other prediction methods, the experimental results demonstrate that the proposed method provided the best accuracy for Total-UPDRS (Root Mean Squared Error = 0.7348; <em>R</em><sup>2</sup> = 0.9169) and Motor-UPDRS (Root Mean Squared Error = 0.8321; <em>R</em><sup>2</sup> = 0.8756) predictions.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 569-585"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000627/pdfft?md5=6bede8ae0475b722db289c4fec906252&pid=1-s2.0-S0208521624000627-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EO-CNN: Equilibrium Optimization-Based hyperparameter tuning for enhanced pneumonia and COVID-19 detection using AlexNet and DarkNet19 EO-CNN:基于均衡优化的超参数调整,利用 AlexNet 和 DarkNet19 增强肺炎和 COVID-19 检测能力
IF 5.3 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-07-01 DOI: 10.1016/j.bbe.2024.06.006
Soner Kiziloluk , Eser Sert , Mohamed Hammad , Ryszard Tadeusiewicz , Paweł Pławiak
{"title":"EO-CNN: Equilibrium Optimization-Based hyperparameter tuning for enhanced pneumonia and COVID-19 detection using AlexNet and DarkNet19","authors":"Soner Kiziloluk ,&nbsp;Eser Sert ,&nbsp;Mohamed Hammad ,&nbsp;Ryszard Tadeusiewicz ,&nbsp;Paweł Pławiak","doi":"10.1016/j.bbe.2024.06.006","DOIUrl":"10.1016/j.bbe.2024.06.006","url":null,"abstract":"<div><p>Convolutional neural networks<span><span> (CNN) have been increasingly popular in image categorization in recent years. Hyperparameter optimization is a critical stage in enhancing the effectiveness of CNNs and achieving better results. Properly tuning hyperparameters allows the model to exhibit improved performance and facilitates faster learning. Misconfigured hyperparameters can prolong the training time or lead to the model not learning at all. Manually tuning hyperparameters is a time-consuming and challenging process. Automatically adjusting hyperparameters helps save time and resources. This study aims to propose an approach that shows higher classification performance than unoptimized convolutional neural network models<span>, even at low epoch values, by automatically optimizing the hyperparameters of AlexNet and DarkNet19 with equilibrium optimization, the newest metaheuristic algorithm<span><span>. In this respect, the proposed approach optimizes the number and size of filters in the first five convolutional layers in AlexNet and DarkNet19 using an equilibrium </span>optimization algorithm. To evaluate the efficacy of the suggested method, experimental analyses were conducted on the pneumonia and COVID-19 datasets. An important advantage of this approach is its ability to accurately classify medical images. The testing process suggests that utilizing the proposed approach to optimize hyperparameters for AlexNet and DarkNet19 led to a 7% and 4.07% improvement, respectively, in </span></span></span>image classification<span> accuracy compared to non-optimized versions of the same networks. Furthermore, the approach displayed superior classification performance even in a few epochs compared to AlexNet, ShuffleNet, DarkNet19, GoogleNet, MobileNet-V2, VGG-16, VGG-19, ResNet18, and Inceptionv3. As a result, automatic tuning of the hyperparameters of AlexNet and DarkNet-19 with EO enabled the performance of these two models to increase significantly.</span></span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 635-650"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141708249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MultiTumor Analyzer (MTA-20–55): A network for efficient classification of detected brain tumors from MRI images 多肿瘤分析仪(MTA-20-55):从核磁共振成像图像中对检测到的脑肿瘤进行高效分类的网络
IF 5.3 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-07-01 DOI: 10.1016/j.bbe.2024.06.003
Akshya Kumar Sahoo , Priyadarsan Parida , Manoj Kumar Panda , K. Muralibabu , Ashima Sindhu Mohanty
{"title":"MultiTumor Analyzer (MTA-20–55): A network for efficient classification of detected brain tumors from MRI images","authors":"Akshya Kumar Sahoo ,&nbsp;Priyadarsan Parida ,&nbsp;Manoj Kumar Panda ,&nbsp;K. Muralibabu ,&nbsp;Ashima Sindhu Mohanty","doi":"10.1016/j.bbe.2024.06.003","DOIUrl":"10.1016/j.bbe.2024.06.003","url":null,"abstract":"<div><p><span><span>Brain cancer<span>, one of the leading causes of mortality worldwide, is caused by brain tumors. Early diagnosis of tumors and predicting their progression can help doctors to save lives. In this article, we have designed an automated approach for locating and classifying tumors from MRI images. The novelties of the research work include the following two stages: Developing an encoder-decoder type 20-Layered </span></span>deep neural network<span><span> (DNN) named MultiTumor Analyzer (MTA-20) with 15 down-sampling layers and 4 up-sampling layers, the segmentation is performed in the initial stage. Here, we have adhered a Leaky ReLU activation function<span> instead of ReLU which learn a parameter with negative values that may have valuable information which is essential specifically for </span></span>image segmentation. Further, a 55-layered DNN using </span></span>multistage<span> feature fusion is developed in the second stage of the work for the classification of localized tumors. The classification is performed using developed MultiTumor Analyzer (MTA-55) DNN with Softmax classifier. The efficacy of the designed network is validated using highly cited quantitative measures such as accuracy, sensitivity, specificity, dice similarity coefficient (DSC), precision, and F1-measure. It is observed that the proposed MTA-20 DNN attains the average accuracy, sensitivity, specificity, DSC, and precision of 99.2 %, 94.6 %, 99.3 %, 88 %, and 82.5 % respectively against seven state-of-the-art techniques. Also, it is found that, the proposed MTA-55 DNN provides the overall accuracy, recall, specificity, F1-measure, precision, and DSC of 99.8 %, 99.633 %, 99.844 %, 99.659 %, 99.689 %, and 99.656 % respectively as compared to thirteen state-of-the-art techniques. These results corroborate the superiority of the proposed technique.</span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 617-634"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified 2D medical image segmentation network (SegmentNet) through distance-awareness and local feature extraction 通过距离感知和局部特征提取实现统一的二维医学图像分割网络(SegmentNet)
IF 6.4 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-06-13 DOI: 10.1016/j.bbe.2024.06.001
Chukwuebuka Joseph Ejiyi , Zhen Qin , Chiagoziem Ukwuoma , Victor Kwaku Agbesi , Ariyo Oluwasanmi , Mugahed A Al-antari , Olusola Bamisile
{"title":"A unified 2D medical image segmentation network (SegmentNet) through distance-awareness and local feature extraction","authors":"Chukwuebuka Joseph Ejiyi ,&nbsp;Zhen Qin ,&nbsp;Chiagoziem Ukwuoma ,&nbsp;Victor Kwaku Agbesi ,&nbsp;Ariyo Oluwasanmi ,&nbsp;Mugahed A Al-antari ,&nbsp;Olusola Bamisile","doi":"10.1016/j.bbe.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.bbe.2024.06.001","url":null,"abstract":"<div><p>In addressing the challenges of medical image segmentation, particularly the elusiveness of global context and limitations in leveraging both global and local context simultaneously, we present SegmentNet as a solution. Our approach involves a step-by-step implementation within the reconstructed UNet architecture, tailored to enhance segmentation performance across diverse medical imaging modalities. The first step involves the integration of multi-focus Distance-Aware Mechanisms (DaMs) within skip connections and between successive layers of the encoder in SegmentNet. This strategic placement focuses on extracting unrelated features, ensuring comprehensive consideration of global context. Following this, Local Feature Extractor Blocks (LFEBs) are introduced at the base of the network. Equipped with depthwise separable operations, standard convolutions, smoothed ReLU, and normalization transform, LFEBs target the capture of specific local image features ensuring that features overlooked by DaMs are appropriately considered. These extracted features are then passed on to the decoder portion of SegmentNet, facilitating enhanced prediction of masks thus, optimizing segmentation performance. Evaluated across diverse datasets, including Breast Ultrasound Images (BUSI), Chest X-ray images (CXRI), and Diabetic Retinal Fundus Images (DRFI), SegmentNet excels. The segmentation evaluation results in terms of accuracy, Jaccard, and specificity are respectively recorded for BUSI, CXRI, and DRFI to be (93.88 %, 98.96 %, and 99.17 %), (99.28 %, 99.58 %, and 99.83 %), and (95.77 %, 95.95 %, and 99.94 %). Thus, showing that the incorporation of DaMs and LFEBs in SegmentNet emerges as a robust solution demonstrating precise 2D medical image segmentation across various modalities. This advancement holds significant potential for diverse clinical applications, promising improved patient care.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 431-449"},"PeriodicalIF":6.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-organ squamous cell carcinoma classification using feature interpretation technique for explainability 利用特征解释技术对多器官鳞状细胞癌进行分类以提高可解释性
IF 6.4 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-04-01 DOI: 10.1016/j.bbe.2024.03.001
Swathi Prabhu , Keerthana Prasad , Thuong Hoang , Xuequan Lu , Sandhya I.
{"title":"Multi-organ squamous cell carcinoma classification using feature interpretation technique for explainability","authors":"Swathi Prabhu ,&nbsp;Keerthana Prasad ,&nbsp;Thuong Hoang ,&nbsp;Xuequan Lu ,&nbsp;Sandhya I.","doi":"10.1016/j.bbe.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.bbe.2024.03.001","url":null,"abstract":"<div><p>Squamous cell carcinoma is the most common type of cancer that occurs in many organs of the human body. To detect carcinoma, pathologists observe tissue samples at multiple magnifications, which is time-consuming and prone to inter- or intra-observer variability. The key challenge for automation of squamous cell carcinoma diagnosis is to extract the features at low (100x) magnification and explain the decision-making process to healthcare professionals. The existing literature used either machine learning or deep learning models to detect squamous cell carcinoma of specific organs. In this work, we report on the implementation of an explainable diagnostic aid system for squamous cell carcinoma of any organ and present a comparative analysis with state-of-the-art models. A classifier with an ensemble feature selection technique is developed to provide an automatic diagnostic aid for distinguishing between squamous cell carcinoma positive and negative cases based on histopathological images. Moreover, explainable AI techniques such as ELI5, LIME and SHAP are introduced to machine learning model which provides feature interpretability of prediction made by the classifier. The results show that the machine learning model achieved an accuracy of 93.43% and 96.66% on public and multi-centric private datasets, respectively. The proposed CatBoost classifier achieved remarkable performance in diagnosing multi-organ squamous cell carcinoma from low magnification histopathological images, even when various illumination variations were introduced.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 2","pages":"Pages 312-326"},"PeriodicalIF":6.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S020852162400010X/pdfft?md5=ada93fcf16ee77c39d2ba32510130e5d&pid=1-s2.0-S020852162400010X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140350870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling the dynamics of microbubble undergoing stable and inertial cavitation: Delineating the effects of ultrasound and microbubble parameters on sonothrombolysis 建立稳定和惯性空化微泡动力学模型:划定超声和微泡参数对超声溶栓的影响
IF 6.4 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-04-01 DOI: 10.1016/j.bbe.2024.04.003
Zhi Qi Tan , Ean Hin Ooi , Yeong Shiong Chiew , Ji Jinn Foo , Yin Kwee Ng , Ean Tat Ooi
{"title":"Modelling the dynamics of microbubble undergoing stable and inertial cavitation: Delineating the effects of ultrasound and microbubble parameters on sonothrombolysis","authors":"Zhi Qi Tan ,&nbsp;Ean Hin Ooi ,&nbsp;Yeong Shiong Chiew ,&nbsp;Ji Jinn Foo ,&nbsp;Yin Kwee Ng ,&nbsp;Ean Tat Ooi","doi":"10.1016/j.bbe.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.bbe.2024.04.003","url":null,"abstract":"<div><p>Sonothrombolysis induces clot breakdown using ultrasound waves to excite microbubbles. Despite the great potential, selecting optimal ultrasound (frequency and pressure) and microbubble (radius) parameters remains a challenge. To address this, a computational model was developed to investigate the bubble behaviour during sonothrombolysis. The blood and clot were assumed to be non-Newtonian and porous, respectively. The effects of ultrasound and microbubble parameters on flow-induced shear stress on the clot surface during stable and inertial cavitation were investigated. It was found that microbubble translation towards the clot and the shear stress on the clot surface during stable cavitation were significant when the bubble was about to undergo inertial cavitation. While insonation of large microbubble (radius of <span><math><mrow><mn>1</mn><mo>.</mo><mn>65</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) at low frequency (0.50 MHz) produced the highest shear stress during stable cavitation, selection of these parameters is not as intuitive for inertial cavitation due to the strong competing effect between jet velocity and translational distance. An increase in jet velocity is always accompanied by a decrease in the translational distance and vice versa. Therefore, a right balance between the jet velocity and the translational distance is critical to maximise the shear stress on the clot surface. A jet velocity of 303 m/s and a distance travelled of <span><math><mrow><mn>5</mn><mo>.</mo><mn>12</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> at an initial bubble-clot separation of <span><math><mrow><mn>10</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> produced the greatest clot surface shear stress. This is achievable by insonating a <span><math><mrow><mn>0</mn><mo>.</mo><mn>55</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> microbubble using 0.50 MHz and 600 kPa ultrasound.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 2","pages":"Pages 358-368"},"PeriodicalIF":6.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000275/pdfft?md5=3e30ca360dcd5e3cc5a1a52cc4cf81df&pid=1-s2.0-S0208521624000275-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140823902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium feature-based brain tumor diagnosis platform using random forest model 基于钙特征的随机森林模型脑肿瘤诊断平台
IF 5.3 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-04-01 DOI: 10.1016/j.bbe.2024.07.002
Ziyi Qiu , Xiaoping Hu , Ting Xu , Kai Sheng , Guanlin Lu , Xiaona Cao , Weicheng Lu , Jingdun Xie , Bingzhe Xu
{"title":"Calcium feature-based brain tumor diagnosis platform using random forest model","authors":"Ziyi Qiu ,&nbsp;Xiaoping Hu ,&nbsp;Ting Xu ,&nbsp;Kai Sheng ,&nbsp;Guanlin Lu ,&nbsp;Xiaona Cao ,&nbsp;Weicheng Lu ,&nbsp;Jingdun Xie ,&nbsp;Bingzhe Xu","doi":"10.1016/j.bbe.2024.07.002","DOIUrl":"10.1016/j.bbe.2024.07.002","url":null,"abstract":"<div><p><span>Calcium flux<span> has been successfully verified to play an important role in the malignant proliferation and progression of brain tumors, which can serve as an important diagnosis guide. However, clinical diagnosis based on calcium information remains challenging because of the highly complex and heterogeneous features in calcium signals. Here we propose a calcium feature-based tumor diagnosis and treatment guidance platform (CA-TDT-GP) using random forest analysis framework for the efficient prediction of complex tumor behaviors for clinical therapy guidance. Multiple important features associated with brain tumor biological malignancy were screened out through comprehensive feature importance analysis. It provided useful guidance for understanding the </span></span>biological process and the selection of drugs of brain tumors. Further clinical validation confirmed the accurate prediction of tumor biological characteristics by the model, with a coefficient of determination of over 0.86 in the same cohort of patients and over 0.77 for the new cohort of patients. We further verified the clinical malignant assessment by this model, which performed a 100% prediction match with diagnosed WHO grades, indicating great potential of the platform for clinical guidance. This promising model provides a new diagnostic and therapeutic tool for brain tumor research and preclinical treatment.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 2","pages":"Pages 286-294"},"PeriodicalIF":5.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141702476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gabor-net with multi-scale hierarchical fusion of features for fundus retinal blood vessel segmentation 用于眼底视网膜血管分割的多尺度分层特征融合 Gabor 网
IF 6.4 2区 医学
Biocybernetics and Biomedical Engineering Pub Date : 2024-04-01 DOI: 10.1016/j.bbe.2024.05.004
Tao Fang , Zhefei Cai , Yingle Fan
{"title":"Gabor-net with multi-scale hierarchical fusion of features for fundus retinal blood vessel segmentation","authors":"Tao Fang ,&nbsp;Zhefei Cai ,&nbsp;Yingle Fan","doi":"10.1016/j.bbe.2024.05.004","DOIUrl":"https://doi.org/10.1016/j.bbe.2024.05.004","url":null,"abstract":"<div><p>This paper proposes a fundus retinal blood vessel segmentation model based on a deep convolutional network structure and biological visual feature extraction mechanism. It aims to solve the multi-scale problem of blood vessels in the fundus retinal blood vessel segmentation task in the field of medical image processing on the basis of increasing the biological interpretability of the model. First, the subject feature information of the retinal blood vessel image is obtained by using the non-subsampled Residual Bolck convolution main channel. Secondly, combined with the study of biological vision mechanisms, an information processing model of the Retina-Exogenius-Primary visual cortex (V1) ventral visual pathway was established. Gabor functions of different scales are used to simulate the structure of different levels of the visual pathway, and the scale information at different levels is integrated into the corresponding hierarchical stages of the convolutional main pathway network to enrich the information of small blood vessels and enhance the semantic information of the overall blood vessels. Finally, considering the imbalance of the ratio of vessel and nonvessel pixels, an adaptive optimization scheme using hybrid loss function weights is proposed to enhance the priority of blood vessel pixels in the calculation of the loss function. According to the experimental results on the STARE, DRIVE and CHASE_DB1 data sets, the model still achieves superior performance evaluation indicators overall compared with the existing optimal methods in the fundus retinal blood vessel segmentation task. This research is of great significance to the field of medical image processing and can provide more accurate auxiliary diagnostic information for clinical diagnosis and treatment.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 2","pages":"Pages 402-413"},"PeriodicalIF":6.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141241421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信