Parallel collaboration and closed-loop control of a cursor using multimodal physiological signals

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Zeqi Ye , Yang Yu , Yiyun Zhang , Yingxin Liu , Jianxiang Sun , Zongtan Zhou , Ling-Li Zeng
{"title":"Parallel collaboration and closed-loop control of a cursor using multimodal physiological signals","authors":"Zeqi Ye ,&nbsp;Yang Yu ,&nbsp;Yiyun Zhang ,&nbsp;Yingxin Liu ,&nbsp;Jianxiang Sun ,&nbsp;Zongtan Zhou ,&nbsp;Ling-Li Zeng","doi":"10.1016/j.bbe.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the parallel collaboration of multimodal physiological signals, combining eye tracker output signals, motor imagery, and error-related potentials to control a computer mouse. Specifically, a parallel working mechanism is implemented in the decision layer, where the eye tracker manages cursor movements, and motor imagery manages click functions. Meanwhile, the eye tracker output signals are integrated with electroencephalography data to detect the idle state for asynchronous control. Additionally, error-related potentials evoked by visual feedback, are detected to reduce the cost of error corrections. To efficiently collect data and provide continuous evaluations, we performed offline training and online testing in the designed paradigm. To further validate the practicability, we conducted online experiments on the real-world computer, focusing on a scenario of opening and closing files. The experiments involved seventeen subjects. The results showed that the stability of the eye tracker was optimized from 67.6% to 95.2% by the designed filter, providing the support for parallel control. The accuracy of motor imagery conducted simultaneously with fixations reached 93.41 ± 2.91%, proving the feasibility of parallel control. Furthermore, the real-world experiments took 45.86 ± 14.94 s to complete three movements and clicks, and showed a significant improvement compared to the baseline experiment without automatic error correction, validating the practicability of the system and the efficacy of error-related potentials detection. Moreover, this system freed users from the stimulus paradigm, enabling a more natural interaction. To sum up, the parallel collaboration of multimodal physiological signals is novel and feasible, the designed mouse is practical and promising.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 470-480"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000512/pdfft?md5=330cd4fbe5c5491b0301fa371de3d879&pid=1-s2.0-S0208521624000512-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000512","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the parallel collaboration of multimodal physiological signals, combining eye tracker output signals, motor imagery, and error-related potentials to control a computer mouse. Specifically, a parallel working mechanism is implemented in the decision layer, where the eye tracker manages cursor movements, and motor imagery manages click functions. Meanwhile, the eye tracker output signals are integrated with electroencephalography data to detect the idle state for asynchronous control. Additionally, error-related potentials evoked by visual feedback, are detected to reduce the cost of error corrections. To efficiently collect data and provide continuous evaluations, we performed offline training and online testing in the designed paradigm. To further validate the practicability, we conducted online experiments on the real-world computer, focusing on a scenario of opening and closing files. The experiments involved seventeen subjects. The results showed that the stability of the eye tracker was optimized from 67.6% to 95.2% by the designed filter, providing the support for parallel control. The accuracy of motor imagery conducted simultaneously with fixations reached 93.41 ± 2.91%, proving the feasibility of parallel control. Furthermore, the real-world experiments took 45.86 ± 14.94 s to complete three movements and clicks, and showed a significant improvement compared to the baseline experiment without automatic error correction, validating the practicability of the system and the efficacy of error-related potentials detection. Moreover, this system freed users from the stimulus paradigm, enabling a more natural interaction. To sum up, the parallel collaboration of multimodal physiological signals is novel and feasible, the designed mouse is practical and promising.

利用多模态生理信号对光标进行并行协作和闭环控制
本文探讨了多模态生理信号的并行协作,将眼球跟踪器输出信号、运动图像和错误相关电位结合起来控制电脑鼠标。具体来说,在决策层实现了并行工作机制,其中眼动仪管理光标移动,运动图像管理点击功能。同时,眼动仪输出信号与脑电图数据相结合,以检测空闲状态,从而实现异步控制。此外,还能检测由视觉反馈诱发的错误相关电位,以降低纠错成本。为了有效收集数据并提供连续评估,我们在设计的范例中进行了离线训练和在线测试。为了进一步验证其实用性,我们在真实世界的计算机上进行了在线实验,重点是打开和关闭文件的场景。共有 17 名受试者参加了实验。结果表明,通过设计的滤波器,眼动仪的稳定性从 67.6% 优化到 95.2%,为并行控制提供了支持。与定点同时进行的运动图像的准确率达到了 93.41 ± 2.91%,证明了并行控制的可行性。此外,实际实验中完成三个动作和点击的时间为 45.86 ± 14.94 秒,与没有自动纠错的基线实验相比有显著改善,验证了系统的实用性和错误相关电位检测的有效性。此外,该系统还将用户从刺激范式中解放出来,实现了更自然的互动。总之,多模态生理信号的并行协作是新颖而可行的,所设计的小鼠是实用而有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信