Edgar Hernando Sepúlveda-Oviedo , Leonardo Enrique Bermeo Clavijo , Luis Carlos Méndez-Córdoba
{"title":"夹断脐带和分娩时间对胎儿到新生儿转变的影响:基于 OpenModelica 虚拟模拟器的方法","authors":"Edgar Hernando Sepúlveda-Oviedo , Leonardo Enrique Bermeo Clavijo , Luis Carlos Méndez-Córdoba","doi":"10.1016/j.bbe.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The transition from fetal to newborn condition involves complex physiological adaptations for extrauterine life. A crucial event in this process is <em>the clamping of the umbilical cord</em>, which can be categorized as immediate or delayed. The type of clamping significantly influences the hemodynamics of the newborn. In this study, we developed a simulator based on existing cardiovascular models to better understand this practice. The simulator covers the period from late gestation to 24 h after birth and faithfully reproduces flow patterns observed in real-life situations (as evaluated by clinical specialists), considering factors such as the timing of cord clamping and the altitude of the birth location. It also reproduces blood pressure values reported in clinical data. Under similar conditions, the simulation results indicate that delayed cord clamping leads to increased oxygen concentration and improved blood volume compared to immediate cord clamping. Delayed cord clamping also had a positive impact on sustained placental respiration. Furthermore, this study provides further evidence that umbilical cord clamping should be based on physiological criteria rather than predefined time intervals.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 716-730"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000615/pdfft?md5=e5a6695a259ebc59fa93e072a4230232&pid=1-s2.0-S0208521624000615-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of timing of umbilical cord clamping and birth on fetal to neonatal transition: OpenModelica-based virtual simulator-based approach\",\"authors\":\"Edgar Hernando Sepúlveda-Oviedo , Leonardo Enrique Bermeo Clavijo , Luis Carlos Méndez-Córdoba\",\"doi\":\"10.1016/j.bbe.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The transition from fetal to newborn condition involves complex physiological adaptations for extrauterine life. A crucial event in this process is <em>the clamping of the umbilical cord</em>, which can be categorized as immediate or delayed. The type of clamping significantly influences the hemodynamics of the newborn. In this study, we developed a simulator based on existing cardiovascular models to better understand this practice. The simulator covers the period from late gestation to 24 h after birth and faithfully reproduces flow patterns observed in real-life situations (as evaluated by clinical specialists), considering factors such as the timing of cord clamping and the altitude of the birth location. It also reproduces blood pressure values reported in clinical data. Under similar conditions, the simulation results indicate that delayed cord clamping leads to increased oxygen concentration and improved blood volume compared to immediate cord clamping. Delayed cord clamping also had a positive impact on sustained placental respiration. Furthermore, this study provides further evidence that umbilical cord clamping should be based on physiological criteria rather than predefined time intervals.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 3\",\"pages\":\"Pages 716-730\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000615/pdfft?md5=e5a6695a259ebc59fa93e072a4230232&pid=1-s2.0-S0208521624000615-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000615\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000615","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effect of timing of umbilical cord clamping and birth on fetal to neonatal transition: OpenModelica-based virtual simulator-based approach
The transition from fetal to newborn condition involves complex physiological adaptations for extrauterine life. A crucial event in this process is the clamping of the umbilical cord, which can be categorized as immediate or delayed. The type of clamping significantly influences the hemodynamics of the newborn. In this study, we developed a simulator based on existing cardiovascular models to better understand this practice. The simulator covers the period from late gestation to 24 h after birth and faithfully reproduces flow patterns observed in real-life situations (as evaluated by clinical specialists), considering factors such as the timing of cord clamping and the altitude of the birth location. It also reproduces blood pressure values reported in clinical data. Under similar conditions, the simulation results indicate that delayed cord clamping leads to increased oxygen concentration and improved blood volume compared to immediate cord clamping. Delayed cord clamping also had a positive impact on sustained placental respiration. Furthermore, this study provides further evidence that umbilical cord clamping should be based on physiological criteria rather than predefined time intervals.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.