Biometrical Journal最新文献

筛选
英文 中文
A method for determining groups in cumulative incidence curves in competing risk data 在竞争风险数据的累积发病率曲线中确定组别的方法。
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-05-22 DOI: 10.1002/bimj.202300084
Marta Sestelo, Luís Meira-Machado, Nora M. Villanueva, Javier Roca-Pardiñas
{"title":"A method for determining groups in cumulative incidence curves in competing risk data","authors":"Marta Sestelo,&nbsp;Luís Meira-Machado,&nbsp;Nora M. Villanueva,&nbsp;Javier Roca-Pardiñas","doi":"10.1002/bimj.202300084","DOIUrl":"10.1002/bimj.202300084","url":null,"abstract":"<p>The cumulative incidence function is the standard method for estimating the marginal probability of a given event in the presence of competing risks. One basic but important goal in the analysis of competing risk data is the comparison of these curves, for which limited literature exists. We proposed a new procedure that lets us not only test the equality of these curves but also group them if they are not equal. The proposed method allows determining the composition of the groups as well as an automatic selection of their number. Simulation studies show the good numerical behavior of the proposed methods for finite sample size. The applicability of the proposed method is illustrated using real data.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse Group Penalties for bi-level variable selection 用于双级变量选择的稀疏组惩罚。
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-05-15 DOI: 10.1002/bimj.202200334
Gregor Buch, Andreas Schulz, Irene Schmidtmann, Konstantin Strauch, Philipp S. Wild
{"title":"Sparse Group Penalties for bi-level variable selection","authors":"Gregor Buch,&nbsp;Andreas Schulz,&nbsp;Irene Schmidtmann,&nbsp;Konstantin Strauch,&nbsp;Philipp S. Wild","doi":"10.1002/bimj.202200334","DOIUrl":"10.1002/bimj.202200334","url":null,"abstract":"<p>Many data sets exhibit a natural group structure due to contextual similarities or high correlations of variables, such as lipid markers that are interrelated based on biochemical principles. Knowledge of such groupings can be used through bi-level selection methods to identify relevant feature groups and highlight their predictive members. One of the best known approaches of this kind combines the classical <i>Least Absolute Shrinkage and Selection Operator</i> (LASSO) with the <i>Group LASSO</i>, resulting in the <i>Sparse Group LASSO</i>. We propose the Sparse Group Penalty (SGP) framework, which allows for a flexible combination of different SGL-style shrinkage conditions. Analogous to SGL, we investigated the combination of the <i>Smoothly Clipped Absolute Deviation</i> (SCAD), the <i>Minimax Concave Penalty</i> (MCP) and the <i>Exponential Penalty</i> (EP) with their group versions, resulting in the <i>Sparse Group SCAD</i>, the <i>Sparse Group MCP</i>, and the novel <i>Sparse Group EP</i> (SGE). Those shrinkage operators provide refined control of the effect of group formation on the selection process through a tuning parameter. In simulation studies, SGPs were compared with other bi-level selection methods (Group Bridge, composite MCP, and Group Exponential LASSO) for variable and group selection evaluated with the Matthews correlation coefficient. We demonstrated the advantages of the new SGE in identifying parsimonious models, but also identified scenarios that highlight the limitations of the approach. The performance of the techniques was further investigated in a real-world use case for the selection of regulated lipids in a randomized clinical trial.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200334","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative review of novel model-assisted designs for phase I/II clinical trials 对 I/II 期临床试验的新型模型辅助设计进行比较审查。
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-05-13 DOI: 10.1002/bimj.202300398
Haolun Shi, Ruitao Lin, Xiaolei Lin
{"title":"Comparative review of novel model-assisted designs for phase I/II clinical trials","authors":"Haolun Shi,&nbsp;Ruitao Lin,&nbsp;Xiaolei Lin","doi":"10.1002/bimj.202300398","DOIUrl":"10.1002/bimj.202300398","url":null,"abstract":"<p>In recent years, both model-based and model-assisted designs have emerged to efficiently determine the optimal biological dose (OBD) in phase I/II trials for immunotherapy and targeted cellular agents. Model-based designs necessitate repeated model fitting and computationally intensive posterior sampling for each dose-assignment decision, limiting their practical application in real trials. On the other hand, model-assisted designs employ simple statistical models and facilitate the precalculation of a decision table for use throughout the trial, eliminating the need for repeated model fitting. Due to their simplicity and transparency, model-assisted designs are often preferred in phase I/II trials. In this paper, we systematically evaluate and compare the operating characteristics of several recent model-assisted phase I/II designs, including TEPI, PRINTE, Joint i3+3, BOIN-ET, STEIN, uTPI, and BOIN12, in addition to the well-known model-based EffTox design, using comprehensive numerical simulations. To ensure an unbiased comparison, we generated 10,000 dosing scenarios using a random scenario generation algorithm for each predetermined OBD location. We thoroughly assess various performance metrics, such as the selection percentages, average patient allocation to OBD, and overdose percentages across the eight designs. Based on these assessments, we offer design recommendations tailored to different objectives, sample sizes, and starting dose locations.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Biometrical Journal 4'24 期刊信息:生物计量学杂志 4'24
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-05-03 DOI: 10.1002/bimj.202470004
{"title":"Issue Information: Biometrical Journal 4'24","authors":"","doi":"10.1002/bimj.202470004","DOIUrl":"https://doi.org/10.1002/bimj.202470004","url":null,"abstract":"","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202470004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling tropical tuna shifts: An inflated power logit regression approach 热带金枪鱼转移建模:膨胀幂对数回归法
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-05-03 DOI: 10.1002/bimj.202300288
Francisco F. Queiroz, Silvia L. P. Ferrari
{"title":"Modeling tropical tuna shifts: An inflated power logit regression approach","authors":"Francisco F. Queiroz,&nbsp;Silvia L. P. Ferrari","doi":"10.1002/bimj.202300288","DOIUrl":"https://doi.org/10.1002/bimj.202300288","url":null,"abstract":"<p>We introduce a new class of zero-or-one inflated power logit (IPL) regression models, which serve as a versatile tool for analyzing bounded continuous data with observations at a boundary. These models are applied to explore the effects of climate changes on the distribution of tropical tuna within the North Atlantic Ocean. Our findings suggest that our modeling approach is adequate and capable of handling the outliers in the data. It exhibited superior performance compared to rival models in both diagnostic analysis and regarding the inference robustness. We offer a user-friendly method for fitting IPL regression models in practical applications.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recoverability and estimation of causal effects under typical multivariable missingness mechanisms 典型多变量缺失机制下因果效应的可恢复性和估计
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-04-18 DOI: 10.1002/bimj.202200326
Jiaxin Zhang, S. Ghazaleh Dashti, John B. Carlin, Katherine J. Lee, Margarita Moreno-Betancur
{"title":"Recoverability and estimation of causal effects under typical multivariable missingness mechanisms","authors":"Jiaxin Zhang,&nbsp;S. Ghazaleh Dashti,&nbsp;John B. Carlin,&nbsp;Katherine J. Lee,&nbsp;Margarita Moreno-Betancur","doi":"10.1002/bimj.202200326","DOIUrl":"https://doi.org/10.1002/bimj.202200326","url":null,"abstract":"<p>In the context of missing data, the identifiability or “recoverability” of the average causal effect (ACE) depends not only on the usual causal assumptions but also on missingness assumptions that can be depicted by adding variable-specific missingness indicators to causal diagrams, creating missingness directed acyclic graphs (m-DAGs). Previous research described canonical m-DAGs, representing typical multivariable missingness mechanisms in epidemiological studies, and examined mathematically the recoverability of the ACE in each case. However, this work assumed no effect modification and did not investigate methods for estimation across such scenarios. Here, we extend this research by determining the recoverability of the ACE in settings with effect modification and conducting a simulation study to evaluate the performance of widely used missing data methods when estimating the ACE using correctly specified g-computation. Methods assessed were complete case analysis (CCA) and various implementations of multiple imputation (MI) with varying degrees of compatibility with the outcome model used in g-computation. Simulations were based on an example from the Victorian Adolescent Health Cohort Study (VAHCS), where interest was in estimating the ACE of adolescent cannabis use on mental health in young adulthood. We found that the ACE is recoverable when no incomplete variable (exposure, outcome, or confounder) causes its own missingness, and nonrecoverable otherwise, in simplified versions of 10 canonical m-DAGs that excluded unmeasured common causes of missingness indicators. Despite this nonrecoverability, simulations showed that MI approaches that are compatible with the outcome model in g-computation may enable approximately unbiased estimation across all canonical m-DAGs considered, except when the outcome causes its own missingness or causes the missingness of a variable that causes its own missingness. In the latter settings, researchers may need to consider sensitivity analysis methods incorporating external information (e.g., delta-adjustment methods). The VAHCS case study illustrates the practical implications of these findings.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On repeated diagnostic testing in screening for a medical condition: How often should the diagnostic test be repeated? 关于在筛查某种疾病时重复诊断检测:诊断检测多久重复一次?
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-04-18 DOI: 10.1002/bimj.202300175
Patarawan Sangnawakij, Dankmar Böhning
{"title":"On repeated diagnostic testing in screening for a medical condition: How often should the diagnostic test be repeated?","authors":"Patarawan Sangnawakij,&nbsp;Dankmar Böhning","doi":"10.1002/bimj.202300175","DOIUrl":"https://doi.org/10.1002/bimj.202300175","url":null,"abstract":"<p>In screening large populations a diagnostic test is frequently used repeatedly. An example is screening for bowel cancer using the fecal occult blood test (FOBT) on several occasions such as at 3 or 6 days. The question that is addressed here is how often should we repeat a diagnostic test when screening for a specific medical condition. Sensitivity is often used as a performance measure of a diagnostic test and is considered here for the individual application of the diagnostic test as well as for the overall screening procedure. The latter can involve an increasingly large number of repeated applications, but how many are sufficient? We demonstrate the issues involved in answering this question using real data on bowel cancer at St Vincents Hospital in Sydney. As data are only available for those testing positive at least once, an appropriate modeling technique is developed on the basis of the zero-truncated binomial distribution which allows for population heterogeneity. The latter is modeled using discrete nonparametric maximum likelihood. If we wish to achieve an overall sensitivity of 90%, the FOBT should be repeated for 2 weeks instead of the 1 week that was used at the time of the survey. A simulation study also shows consistency in the sense that bias and standard deviation for the estimated sensitivity decrease with an increasing number of repeated occasions as well as with increasing sample size.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exhaustive ADDIS principle for online FWER control 在线 FWER 控制的详尽 ADDIS 原理
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-04-18 DOI: 10.1002/bimj.202300237
Lasse Fischer, Marta Bofill Roig, Werner Brannath
{"title":"An exhaustive ADDIS principle for online FWER control","authors":"Lasse Fischer,&nbsp;Marta Bofill Roig,&nbsp;Werner Brannath","doi":"10.1002/bimj.202300237","DOIUrl":"https://doi.org/10.1002/bimj.202300237","url":null,"abstract":"<p>In this paper, we consider online multiple testing with familywise error rate (FWER) control, where the probability of committing at least one type I error will remain under control while testing a possibly infinite sequence of hypotheses over time. Currently, adaptive-discard (ADDIS) procedures seem to be the most promising online procedures with FWER control in terms of power. Now, our main contribution is a uniform improvement of the ADDIS principle and thus of all ADDIS procedures. This means, the methods we propose reject as least as much hypotheses as ADDIS procedures and in some cases even more, while maintaining FWER control. In addition, we show that there is no other FWER controlling procedure that enlarges the event of rejecting any hypothesis. Finally, we apply the new principle to derive uniform improvements of the ADDIS-Spending and ADDIS-Graph.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel nonparametric time-dependent precision–recall curve estimator for right-censored survival data 用于右删失生存数据的新型非参数时间相关精度-召回曲线估计器
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-04-18 DOI: 10.1002/bimj.202300135
Kassu Mehari Beyene, Ding-Geng Chen, Yehenew Getachew Kifle
{"title":"A novel nonparametric time-dependent precision–recall curve estimator for right-censored survival data","authors":"Kassu Mehari Beyene,&nbsp;Ding-Geng Chen,&nbsp;Yehenew Getachew Kifle","doi":"10.1002/bimj.202300135","DOIUrl":"https://doi.org/10.1002/bimj.202300135","url":null,"abstract":"<p>In order to assess prognostic risk for individuals in precision health research, risk prediction models are increasingly used, in which statistical models are used to estimate the risk of future outcomes based on clinical and nonclinical characteristics. The predictive accuracy of a risk score must be assessed before it can be used in routine clinical decision making, where the receiver operator characteristic curves, precision–recall curves, and their corresponding area under the curves are commonly used metrics to evaluate the discriminatory ability of a continuous risk score. Among these the precision–recall curves have been shown to be more informative when dealing with unbalanced biomarker distribution between classes, which is common in rare event, even though except one, all existing methods are proposed for classic uncensored data. This paper is therefore to propose a novel nonparametric estimation approach for the time-dependent precision–recall curve and its associated area under the curve for right-censored data. A simulation is conducted to show the better finite sample property of the proposed estimator over the existing method and a real-world data from primary biliary cirrhosis trial is used to demonstrate the practical applicability of the proposed estimator.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharing information across patient subgroups to draw conclusions from sparse treatment networks 跨患者亚群共享信息,从稀疏的治疗网络中得出结论
IF 1.7 3区 生物学
Biometrical Journal Pub Date : 2024-04-18 DOI: 10.1002/bimj.202200316
Theodoros Evrenoglou, Silvia Metelli, Johannes-Schneider Thomas, Spyridon Siafis, Rebecca M. Turner, Stefan Leucht, Anna Chaimani
{"title":"Sharing information across patient subgroups to draw conclusions from sparse treatment networks","authors":"Theodoros Evrenoglou,&nbsp;Silvia Metelli,&nbsp;Johannes-Schneider Thomas,&nbsp;Spyridon Siafis,&nbsp;Rebecca M. Turner,&nbsp;Stefan Leucht,&nbsp;Anna Chaimani","doi":"10.1002/bimj.202200316","DOIUrl":"https://doi.org/10.1002/bimj.202200316","url":null,"abstract":"<p>Network meta-analysis (NMA) usually provides estimates of the relative effects with the highest possible precision. However, sparse networks with few available studies and limited direct evidence can arise, threatening the robustness and reliability of NMA estimates. In these cases, the limited amount of available information can hamper the formal evaluation of the underlying NMA assumptions of transitivity and consistency. In addition, NMA estimates from sparse networks are expected to be imprecise and possibly biased as they rely on large-sample approximations that are invalid in the absence of sufficient data. We propose a Bayesian framework that allows sharing of information between two networks that pertain to different population subgroups. Specifically, we use the results from a subgroup with a lot of direct evidence (a dense network) to construct informative priors for the relative effects in the target subgroup (a sparse network). This is a two-stage approach where at the first stage, we extrapolate the results of the dense network to those expected from the sparse network. This takes place by using a modified hierarchical NMA model where we add a location parameter that shifts the distribution of the relative effects to make them applicable to the target population. At the second stage, these extrapolated results are used as prior information for the sparse network. We illustrate our approach through a motivating example of psychiatric patients. Our approach results in more precise and robust estimates of the relative effects and can adequately inform clinical practice in presence of sparse networks.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200316","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信