Siyu Zheng, Alexander C. McLain, Joshua Habiger, Christopher Rorden, Julius Fridriksson
{"title":"通过加权 p 值控制异构数据病变-症状映射的错误发现率","authors":"Siyu Zheng, Alexander C. McLain, Joshua Habiger, Christopher Rorden, Julius Fridriksson","doi":"10.1002/bimj.202300198","DOIUrl":null,"url":null,"abstract":"<p>Lesion-symptom mapping studies provide insight into what areas of the brain are involved in different aspects of cognition. This is commonly done via behavioral testing in patients with a naturally occurring brain injury or lesions (e.g., strokes or brain tumors). This results in high-dimensional observational data where lesion status (present/absent) is nonuniformly distributed, with some voxels having lesions in very few (or no) subjects. In this situation, mass univariate hypothesis tests have severe power heterogeneity where many tests are known a priori to have little to no power. Recent advancements in multiple testing methodologies allow researchers to weigh hypotheses according to side information (e.g., information on power heterogeneity). In this paper, we propose the use of <i>p</i>-value weighting for voxel-based lesion-symptom mapping studies. The weights are created using the distribution of lesion status and spatial information to estimate different non-null prior probabilities for each hypothesis test through some common approaches. We provide a <i>monotone minimum weight</i> criterion, which requires minimum a priori power information. Our methods are demonstrated on dependent simulated data and an aphasia study investigating which regions of the brain are associated with the severity of language impairment among stroke survivors. The results demonstrate that the proposed methods have robust error control and can increase power. Further, we showcase how weights can be used to identify regions that are inconclusive due to lack of power.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300198","citationCount":"0","resultStr":"{\"title\":\"False Discovery Rate Control for Lesion-Symptom Mapping With Heterogeneous Data via Weighted p-Values\",\"authors\":\"Siyu Zheng, Alexander C. McLain, Joshua Habiger, Christopher Rorden, Julius Fridriksson\",\"doi\":\"10.1002/bimj.202300198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lesion-symptom mapping studies provide insight into what areas of the brain are involved in different aspects of cognition. This is commonly done via behavioral testing in patients with a naturally occurring brain injury or lesions (e.g., strokes or brain tumors). This results in high-dimensional observational data where lesion status (present/absent) is nonuniformly distributed, with some voxels having lesions in very few (or no) subjects. In this situation, mass univariate hypothesis tests have severe power heterogeneity where many tests are known a priori to have little to no power. Recent advancements in multiple testing methodologies allow researchers to weigh hypotheses according to side information (e.g., information on power heterogeneity). In this paper, we propose the use of <i>p</i>-value weighting for voxel-based lesion-symptom mapping studies. The weights are created using the distribution of lesion status and spatial information to estimate different non-null prior probabilities for each hypothesis test through some common approaches. We provide a <i>monotone minimum weight</i> criterion, which requires minimum a priori power information. Our methods are demonstrated on dependent simulated data and an aphasia study investigating which regions of the brain are associated with the severity of language impairment among stroke survivors. The results demonstrate that the proposed methods have robust error control and can increase power. Further, we showcase how weights can be used to identify regions that are inconclusive due to lack of power.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300198\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300198\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300198","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
病变-症状图谱研究有助于深入了解大脑的哪些区域与认知的不同方面有关。这通常是通过对自然发生的脑损伤或病变(如中风或脑肿瘤)患者进行行为测试来实现的。这就产生了高维观察数据,其中病变状态(存在/不存在)分布不均匀,一些体素在极少数(或没有)受试者中存在病变。在这种情况下,大规模单变量假设检验具有严重的功率异质性,许多检验先验已知几乎没有功率。多重测试方法的最新进展使研究人员能够根据侧面信息(如功率异质性信息)对假设进行权衡。在本文中,我们建议在基于体素的病变症状图谱研究中使用 p 值加权法。权重是利用病变状态和空间信息的分布来创建的,通过一些常见的方法来估计每个假设检验的不同非空先验概率。我们提供了一个单调最小权重标准,它要求最小的先验功率信息。我们的方法在依赖性模拟数据和一项失语症研究中得到了验证,该研究调查了大脑的哪些区域与中风幸存者语言障碍的严重程度相关。结果表明,所提出的方法具有强大的误差控制能力,并能提高功率。此外,我们还展示了如何利用权重来识别由于缺乏力量而无法得出结论的区域。
False Discovery Rate Control for Lesion-Symptom Mapping With Heterogeneous Data via Weighted p-Values
Lesion-symptom mapping studies provide insight into what areas of the brain are involved in different aspects of cognition. This is commonly done via behavioral testing in patients with a naturally occurring brain injury or lesions (e.g., strokes or brain tumors). This results in high-dimensional observational data where lesion status (present/absent) is nonuniformly distributed, with some voxels having lesions in very few (or no) subjects. In this situation, mass univariate hypothesis tests have severe power heterogeneity where many tests are known a priori to have little to no power. Recent advancements in multiple testing methodologies allow researchers to weigh hypotheses according to side information (e.g., information on power heterogeneity). In this paper, we propose the use of p-value weighting for voxel-based lesion-symptom mapping studies. The weights are created using the distribution of lesion status and spatial information to estimate different non-null prior probabilities for each hypothesis test through some common approaches. We provide a monotone minimum weight criterion, which requires minimum a priori power information. Our methods are demonstrated on dependent simulated data and an aphasia study investigating which regions of the brain are associated with the severity of language impairment among stroke survivors. The results demonstrate that the proposed methods have robust error control and can increase power. Further, we showcase how weights can be used to identify regions that are inconclusive due to lack of power.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.