受限平均生存时间的半参数加法模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuan Zhang, Douglas E. Schaubel
{"title":"受限平均生存时间的半参数加法模型","authors":"Yuan Zhang,&nbsp;Douglas E. Schaubel","doi":"10.1002/bimj.202200371","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Analysis of the restricted mean survival time (RMST) has become increasingly common in biomedical studies during the last decade as a means of estimating treatment or covariate effects on survival. Advantages of RMST over the hazard ratio (HR) include increased interpretability and lack of reliance on the often tenuous proportional hazards assumption. Some authors have argued that RMST regression should generally be the frontline analysis as opposed to methods based on counting process increments. However, in order for the use of the RMST to be more mainstream, it is necessary to broaden the range of data structures to which pertinent methods can be applied. In this report, we address this issue from two angles. First, most of existing methodological development for directly modeling RMST has focused on multiplicative models. An additive model may be preferred due to goodness of fit and/or parameter interpretation. Second, many settings encountered nowadays feature high-dimensional categorical (nuisance) covariates, for which parameter estimation is best avoided. Motivated by these considerations, we propose stratified additive models for direct RMST analysis. The proposed methods feature additive covariate effects. Moreover, nuisance factors can be factored out of the estimation, akin to stratification in Cox regression, such that focus can be appropriately awarded to the parameters of chief interest. Large-sample properties of the proposed estimators are derived, and a simulation study is performed to assess finite-sample performance. In addition, we provide techniques for evaluating a fitted model with respect to risk discrimination and predictive accuracy. The proposed methods are then applied to liver transplant data to estimate the effects of donor characteristics on posttransplant survival time.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric Additive Modeling of the Restricted Mean Survival Time\",\"authors\":\"Yuan Zhang,&nbsp;Douglas E. Schaubel\",\"doi\":\"10.1002/bimj.202200371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Analysis of the restricted mean survival time (RMST) has become increasingly common in biomedical studies during the last decade as a means of estimating treatment or covariate effects on survival. Advantages of RMST over the hazard ratio (HR) include increased interpretability and lack of reliance on the often tenuous proportional hazards assumption. Some authors have argued that RMST regression should generally be the frontline analysis as opposed to methods based on counting process increments. However, in order for the use of the RMST to be more mainstream, it is necessary to broaden the range of data structures to which pertinent methods can be applied. In this report, we address this issue from two angles. First, most of existing methodological development for directly modeling RMST has focused on multiplicative models. An additive model may be preferred due to goodness of fit and/or parameter interpretation. Second, many settings encountered nowadays feature high-dimensional categorical (nuisance) covariates, for which parameter estimation is best avoided. Motivated by these considerations, we propose stratified additive models for direct RMST analysis. The proposed methods feature additive covariate effects. Moreover, nuisance factors can be factored out of the estimation, akin to stratification in Cox regression, such that focus can be appropriately awarded to the parameters of chief interest. Large-sample properties of the proposed estimators are derived, and a simulation study is performed to assess finite-sample performance. In addition, we provide techniques for evaluating a fitted model with respect to risk discrimination and predictive accuracy. The proposed methods are then applied to liver transplant data to estimate the effects of donor characteristics on posttransplant survival time.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202200371\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202200371","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,受限平均生存时间(RMST)分析在生物医学研究中越来越普遍,成为估计治疗或共变量对生存影响的一种手段。与危险比(HR)相比,RMST 的优点包括可解释性更强,而且不依赖于往往很脆弱的比例危险假设。一些学者认为,RMST 回归通常应作为一线分析方法,而不是基于计数过程增量的方法。然而,为了使 RMST 的使用更加主流化,有必要扩大可应用相关方法的数据结构的范围。在本报告中,我们将从两个角度探讨这一问题。首先,现有的直接建立 RMST 模型的方法大多集中在乘法模型上。出于拟合度和/或参数解释的考虑,加法模型可能更受欢迎。其次,目前遇到的许多情况都具有高维分类(滋扰)协变量,最好避免对其进行参数估计。基于这些考虑,我们提出了用于直接 RMST 分析的分层加法模型。所提出的方法具有协变量的加性效应。此外,干扰因素可以从估计中剔除,类似于 Cox 回归中的分层,这样就可以将重点适当地放在主要相关参数上。我们推导出了所建议估计器的大样本特性,并进行了模拟研究以评估有限样本性能。此外,我们还提供了评估拟合模型的风险判别和预测准确性的技术。然后将所提出的方法应用于肝脏移植数据,以估计捐赠者特征对移植后存活时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiparametric Additive Modeling of the Restricted Mean Survival Time

Analysis of the restricted mean survival time (RMST) has become increasingly common in biomedical studies during the last decade as a means of estimating treatment or covariate effects on survival. Advantages of RMST over the hazard ratio (HR) include increased interpretability and lack of reliance on the often tenuous proportional hazards assumption. Some authors have argued that RMST regression should generally be the frontline analysis as opposed to methods based on counting process increments. However, in order for the use of the RMST to be more mainstream, it is necessary to broaden the range of data structures to which pertinent methods can be applied. In this report, we address this issue from two angles. First, most of existing methodological development for directly modeling RMST has focused on multiplicative models. An additive model may be preferred due to goodness of fit and/or parameter interpretation. Second, many settings encountered nowadays feature high-dimensional categorical (nuisance) covariates, for which parameter estimation is best avoided. Motivated by these considerations, we propose stratified additive models for direct RMST analysis. The proposed methods feature additive covariate effects. Moreover, nuisance factors can be factored out of the estimation, akin to stratification in Cox regression, such that focus can be appropriately awarded to the parameters of chief interest. Large-sample properties of the proposed estimators are derived, and a simulation study is performed to assess finite-sample performance. In addition, we provide techniques for evaluating a fitted model with respect to risk discrimination and predictive accuracy. The proposed methods are then applied to liver transplant data to estimate the effects of donor characteristics on posttransplant survival time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信