A Network-Constrain Weibull AFT Model for Biomarkers Discovery

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Claudia Angelini, Daniela De Canditiis, Italia De Feis, Antonella Iuliano
{"title":"A Network-Constrain Weibull AFT Model for Biomarkers Discovery","authors":"Claudia Angelini,&nbsp;Daniela De Canditiis,&nbsp;Italia De Feis,&nbsp;Antonella Iuliano","doi":"10.1002/bimj.202300272","DOIUrl":null,"url":null,"abstract":"<p>We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300272","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.

Abstract Image

用于生物标记物发现的网络应变 Weibull AFT 模型
我们提出的 AFTNet 是一种新颖的网络约束生存分析方法,它基于 Weibull 加速失效时间(AFT)模型,通过惩罚似然法解决变量选择和估计问题。当使用对数线性表示时,推理问题就变成了一个结构稀疏回归问题,我们使用一种既能促进稀疏性又能促进分组效应的双重惩罚,明确地纳入了预测因子之间的相关模式。此外,我们还建立了 AFTNet 估计器的理论一致性,并提出了一种基于近似梯度下降法的高效迭代计算算法。最后,我们对 AFTNet 在合成数据和真实数据示例上的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信