Biostatistics最新文献

筛选
英文 中文
Functional support vector machine. 功能支持向量机
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae007
Shanghong Xie, R Todd Ogden
{"title":"Functional support vector machine.","authors":"Shanghong Xie, R Todd Ogden","doi":"10.1093/biostatistics/kxae007","DOIUrl":"10.1093/biostatistics/kxae007","url":null,"abstract":"<p><p>Linear and generalized linear scalar-on-function modeling have been commonly used to understand the relationship between a scalar response variable (e.g. continuous, binary outcomes) and functional predictors. Such techniques are sensitive to model misspecification when the relationship between the response variable and the functional predictors is complex. On the other hand, support vector machines (SVMs) are among the most robust prediction models but do not take account of the high correlations between repeated measurements and cannot be used for irregular data. In this work, we propose a novel method to integrate functional principal component analysis with SVM techniques for classification and regression to account for the continuous nature of functional data and the nonlinear relationship between the scalar response variable and the functional predictors. We demonstrate the performance of our method through extensive simulation experiments and two real data applications: the classification of alcoholics using electroencephalography signals and the prediction of glucobrassicin concentration using near-infrared reflectance spectroscopy. Our methods especially have more advantages when the measurement errors in functional predictors are relatively large.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1178-1194"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Exponential family measurement error models for single-cell CRISPR screens. 更正:单细胞 CRISPR 筛选的指数族测量误差模型。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae022
{"title":"Correction to: Exponential family measurement error models for single-cell CRISPR screens.","authors":"","doi":"10.1093/biostatistics/kxae022","DOIUrl":"10.1093/biostatistics/kxae022","url":null,"abstract":"","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1273"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian semiparametric model for sequential treatment decisions with informative timing. 具有信息时间的序列治疗决策的贝叶斯半参数模型。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxad035
Arman Oganisian, Kelly D Getz, Todd A Alonzo, Richard Aplenc, Jason A Roy
{"title":"Bayesian semiparametric model for sequential treatment decisions with informative timing.","authors":"Arman Oganisian, Kelly D Getz, Todd A Alonzo, Richard Aplenc, Jason A Roy","doi":"10.1093/biostatistics/kxad035","DOIUrl":"10.1093/biostatistics/kxad035","url":null,"abstract":"<p><p>We develop a Bayesian semiparametric model for the impact of dynamic treatment rules on survival among patients diagnosed with pediatric acute myeloid leukemia (AML). The data consist of a subset of patients enrolled in a phase III clinical trial in which patients move through a sequence of four treatment courses. At each course, they undergo treatment that may or may not include anthracyclines (ACT). While ACT is known to be effective at treating AML, it is also cardiotoxic and can lead to early death for some patients. Our task is to estimate the potential survival probability under hypothetical dynamic ACT treatment strategies, but there are several impediments. First, since ACT is not randomized, its effect on survival is confounded over time. Second, subjects initiate the next course depending on when they recover from the previous course, making timing potentially informative of subsequent treatment and survival. Third, patients may die or drop out before ever completing the full treatment sequence. We develop a generative Bayesian semiparametric model based on Gamma Process priors to address these complexities. At each treatment course, the model captures subjects' transition to subsequent treatment or death in continuous time. G-computation is used to compute a posterior over potential survival probability that is adjusted for time-varying confounding. Using our approach, we estimate the efficacy of hypothetical treatment rules that dynamically modify ACT based on evolving cardiac function.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"947-961"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139479547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mendelian randomization analysis using multiple biomarkers of an underlying common exposure. 利用潜在共同暴露的多种生物标志物进行孟德尔随机分析。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae006
Jin Jin, Guanghao Qi, Zhi Yu, Nilanjan Chatterjee
{"title":"Mendelian randomization analysis using multiple biomarkers of an underlying common exposure.","authors":"Jin Jin, Guanghao Qi, Zhi Yu, Nilanjan Chatterjee","doi":"10.1093/biostatistics/kxae006","DOIUrl":"10.1093/biostatistics/kxae006","url":null,"abstract":"<p><p>Mendelian randomization (MR) analysis is increasingly popular for testing the causal effect of exposures on disease outcomes using data from genome-wide association studies. In some settings, the underlying exposure, such as systematic inflammation, may not be directly observable, but measurements can be available on multiple biomarkers or other types of traits that are co-regulated by the exposure. We propose a method for MR analysis on latent exposures (MRLE), which tests the significance for, and the direction of, the effect of a latent exposure by leveraging information from multiple related traits. The method is developed by constructing a set of estimating functions based on the second-order moments of GWAS summary association statistics for the observable traits, under a structural equation model where genetic variants are assumed to have indirect effects through the latent exposure and potentially direct effects on the traits. Simulation studies show that MRLE has well-controlled type I error rates and enhanced power compared to single-trait MR tests under various types of pleiotropy. Applications of MRLE using genetic association statistics across five inflammatory biomarkers (CRP, IL-6, IL-8, TNF-α, and MCP-1) provide evidence for potential causal effects of inflammation on increasing the risk of coronary artery disease, colorectal cancer, and rheumatoid arthritis, while standard MR analysis for individual biomarkers fails to detect consistent evidence for such effects.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1015-1033"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast matrix completion in epigenetic methylation studies with informative covariates. 在带有信息协变量的表观遗传甲基化研究中快速完成矩阵。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae016
Mélina Ribaud, Aurélie Labbe, Khaled Fouda, Karim Oualkacha
{"title":"Fast matrix completion in epigenetic methylation studies with informative covariates.","authors":"Mélina Ribaud, Aurélie Labbe, Khaled Fouda, Karim Oualkacha","doi":"10.1093/biostatistics/kxae016","DOIUrl":"10.1093/biostatistics/kxae016","url":null,"abstract":"<p><p>DNA methylation is an important epigenetic mark that modulates gene expression through the inhibition of transcriptional proteins binding to DNA. As in many other omics experiments, the issue of missing values is an important one, and appropriate imputation techniques are important in avoiding an unnecessary sample size reduction as well as to optimally leverage the information collected. We consider the case where relatively few samples are processed via an expensive high-density whole genome bisulfite sequencing (WGBS) strategy and a larger number of samples is processed using more affordable low-density, array-based technologies. In such cases, one can impute the low-coverage (array-based) methylation data using the high-density information provided by the WGBS samples. In this paper, we propose an efficient Linear Model of Coregionalisation with informative Covariates (LMCC) to predict missing values based on observed values and covariates. Our model assumes that at each site, the methylation vector of all samples is linked to the set of fixed factors (covariates) and a set of latent factors. Furthermore, we exploit the functional nature of the data and the spatial correlation across sites by assuming some Gaussian processes on the fixed and latent coefficient vectors, respectively. Our simulations show that the use of covariates can significantly improve the accuracy of imputed values, especially in cases where missing data contain some relevant information about the explanatory variable. We also showed that our proposed model is particularly efficient when the number of columns is much greater than the number of rows-which is usually the case in methylation data analysis. Finally, we apply and compare our proposed method with alternative approaches on two real methylation datasets, showing how covariates such as cell type, tissue type or age can enhance the accuracy of imputed values.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1062-1078"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree-informed Bayesian multi-source domain adaptation: cross-population probabilistic cause-of-death assignment using verbal autopsy. 树状信息贝叶斯多源领域适应:利用口头尸检进行跨人群死因概率分配。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae005
Zhenke Wu, Zehang R Li, Irena Chen, Mengbing Li
{"title":"Tree-informed Bayesian multi-source domain adaptation: cross-population probabilistic cause-of-death assignment using verbal autopsy.","authors":"Zhenke Wu, Zehang R Li, Irena Chen, Mengbing Li","doi":"10.1093/biostatistics/kxae005","DOIUrl":"10.1093/biostatistics/kxae005","url":null,"abstract":"<p><p>Determining causes of deaths (CODs) occurred outside of civil registration and vital statistics systems is challenging. A technique called verbal autopsy (VA) is widely adopted to gather information on deaths in practice. A VA consists of interviewing relatives of a deceased person about symptoms of the deceased in the period leading to the death, often resulting in multivariate binary responses. While statistical methods have been devised for estimating the cause-specific mortality fractions (CSMFs) for a study population, continued expansion of VA to new populations (or \"domains\") necessitates approaches that recognize between-domain differences while capitalizing on potential similarities. In this article, we propose such a domain-adaptive method that integrates external between-domain similarity information encoded by a prespecified rooted weighted tree. Given a cause, we use latent class models to characterize the conditional distributions of the responses that may vary by domain. We specify a logistic stick-breaking Gaussian diffusion process prior along the tree for class mixing weights with node-specific spike-and-slab priors to pool information between the domains in a data-driven way. The posterior inference is conducted via a scalable variational Bayes algorithm. Simulation studies show that the domain adaptation enabled by the proposed method improves CSMF estimation and individual COD assignment. We also illustrate and evaluate the method using a validation dataset. The article concludes with a discussion of limitations and future directions.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1233-1253"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bayesian approach for investigating the pharmacogenetics of combination antiretroviral therapy in people with HIV. 研究艾滋病病毒感染者抗逆转录病毒联合疗法药物遗传学的贝叶斯方法。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae001
Wei Jin, Yang Ni, Amanda B Spence, Leah H Rubin, Yanxun Xu
{"title":"A Bayesian approach for investigating the pharmacogenetics of combination antiretroviral therapy in people with HIV.","authors":"Wei Jin, Yang Ni, Amanda B Spence, Leah H Rubin, Yanxun Xu","doi":"10.1093/biostatistics/kxae001","DOIUrl":"10.1093/biostatistics/kxae001","url":null,"abstract":"<p><p>Combination antiretroviral therapy (ART) with at least three different drugs has become the standard of care for people with HIV (PWH) due to its exceptional effectiveness in viral suppression. However, many ART drugs have been reported to associate with neuropsychiatric adverse effects including depression, especially when certain genetic polymorphisms exist. Pharmacogenetics is an important consideration for administering combination ART as it may influence drug efficacy and increase risk for neuropsychiatric conditions. Large-scale longitudinal HIV databases provide researchers opportunities to investigate the pharmacogenetics of combination ART in a data-driven manner. However, with more than 30 FDA-approved ART drugs, the interplay between the large number of possible ART drug combinations and genetic polymorphisms imposes statistical modeling challenges. We develop a Bayesian approach to examine the longitudinal effects of combination ART and their interactions with genetic polymorphisms on depressive symptoms in PWH. The proposed method utilizes a Gaussian process with a composite kernel function to capture the longitudinal combination ART effects by directly incorporating individuals' treatment histories, and a Bayesian classification and regression tree to account for individual heterogeneity. Through both simulation studies and an application to a dataset from the Women's Interagency HIV Study, we demonstrate the clinical utility of the proposed approach in investigating the pharmacogenetics of combination ART and assisting physicians to make effective individualized treatment decisions that can improve health outcomes for PWH.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1034-1048"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroimaging meta regression for coordinate based meta analysis data with a spatial model. 利用空间模型对基于坐标的元分析数据进行神经成像元回归。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae024
Yifan Yu, Rosario Pintos Lobo, Michael Cody Riedel, Katherine Bottenhorn, Angela R Laird, Thomas E Nichols
{"title":"Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.","authors":"Yifan Yu, Rosario Pintos Lobo, Michael Cody Riedel, Katherine Bottenhorn, Angela R Laird, Thomas E Nichols","doi":"10.1093/biostatistics/kxae024","DOIUrl":"10.1093/biostatistics/kxae024","url":null,"abstract":"<p><p>Coordinate-based meta-analysis combines evidence from a collection of neuroimaging studies to estimate brain activation. In such analyses, a key practical challenge is to find a computationally efficient approach with good statistical interpretability to model the locations of activation foci. In this article, we propose a generative coordinate-based meta-regression (CBMR) framework to approximate a smooth activation intensity function and investigate the effect of study-level covariates (e.g. year of publication, sample size). We employ a spline parameterization to model the spatial structure of brain activation and consider four stochastic models for modeling the random variation in foci. To examine the validity of CBMR, we estimate brain activation on 20 meta-analytic datasets, conduct spatial homogeneity tests at the voxel level, and compare the results to those generated by existing kernel-based and model-based approaches. Keywords: generalized linear models; meta-analysis; spatial statistics; statistical modeling.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1210-1232"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian mixed model inference for genetic association under related samples with brain network phenotype. 贝叶斯混合模型推断脑网络表型相关样本下的遗传关联。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae008
Xinyuan Tian, Yiting Wang, Selena Wang, Yi Zhao, Yize Zhao
{"title":"Bayesian mixed model inference for genetic association under related samples with brain network phenotype.","authors":"Xinyuan Tian, Yiting Wang, Selena Wang, Yi Zhao, Yize Zhao","doi":"10.1093/biostatistics/kxae008","DOIUrl":"10.1093/biostatistics/kxae008","url":null,"abstract":"<p><p>Genetic association studies for brain connectivity phenotypes have gained prominence due to advances in noninvasive imaging techniques and quantitative genetics. Brain connectivity traits, characterized by network configurations and unique biological structures, present distinct challenges compared to other quantitative phenotypes. Furthermore, the presence of sample relatedness in the most imaging genetics studies limits the feasibility of adopting existing network-response modeling. In this article, we fill this gap by proposing a Bayesian network-response mixed-effect model that considers a network-variate phenotype and incorporates population structures including pedigrees and unknown sample relatedness. To accommodate the inherent topological architecture associated with the genetic contributions to the phenotype, we model the effect components via a set of effect network configurations and impose an inter-network sparsity and intra-network shrinkage to dissect the phenotypic network configurations affected by the risk genetic variant. A Markov chain Monte Carlo (MCMC) algorithm is further developed to facilitate uncertainty quantification. We evaluate the performance of our model through extensive simulations. By further applying the method to study, the genetic bases for brain structural connectivity using data from the Human Connectome Project with excessive family structures, we obtain plausible and interpretable results. Beyond brain connectivity genetic studies, our proposed model also provides a general linear mixed-effect regression framework for network-variate outcomes.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1195-1209"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic models augmented by hierarchical data: an application of estimating HIV epidemics at sub-national level. 分层数据增强的动态模型:估算国家以下一级艾滋病毒流行情况的应用。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-10-01 DOI: 10.1093/biostatistics/kxae003
Bao Le, Xiaoyue Niu, Tim Brown, Jeffrey W Imai-Eaton
{"title":"Dynamic models augmented by hierarchical data: an application of estimating HIV epidemics at sub-national level.","authors":"Bao Le, Xiaoyue Niu, Tim Brown, Jeffrey W Imai-Eaton","doi":"10.1093/biostatistics/kxae003","DOIUrl":"10.1093/biostatistics/kxae003","url":null,"abstract":"<p><p>Dynamic models have been successfully used in producing estimates of HIV epidemics at the national level due to their epidemiological nature and their ability to estimate prevalence, incidence, and mortality rates simultaneously. Recently, HIV interventions and policies have required more information at sub-national levels to support local planning, decision-making and resource allocation. Unfortunately, many areas lack sufficient data for deriving stable and reliable results, and this is a critical technical barrier to more stratified estimates. One solution is to borrow information from other areas within the same country. However, directly assuming hierarchical structures within the HIV dynamic models is complicated and computationally time-consuming. In this article, we propose a simple and innovative way to incorporate hierarchical information into the dynamical systems by using auxiliary data. The proposed method efficiently uses information from multiple areas within each country without increasing the computational burden. As a result, the new model improves predictive ability and uncertainty assessment.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1049-1061"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信