{"title":"Covariate-adjusted estimators of diagnostic accuracy in randomized trials.","authors":"Jon A Steingrimsson","doi":"10.1093/biostatistics/kxaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Randomized controlled trials evaluating the diagnostic accuracy of a marker frequently collect information on baseline covariates in addition to information on the marker and the reference standard. However, standard estimators of sensitivity and specificity do not use data on baseline covariates and restrict the analysis to data from participants with a positive reference standard in the intervention arm being evaluated. Covariate-adjusted estimators for marginal treatment effects have been developed and been advocated for by regulatory agencies because they can improve power compared to unadjusted estimators. Despite this, similar covariate-adjusted estimators for marginal sensitivity and specificity have not yet been developed. In this manuscript, we address this gap by developing covariate-adjusted estimators for marginal sensitivity and specificity of a diagnostic test that leverage baseline covariate information. The estimators also use data from all participants, not just participants with a positive reference standard in the intervention arm being evaluated. We derive the asymptotic properties of the estimators and evaluate the finite sample properties of the estimators using simulations and by analyzing data on lung cancer screening.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Randomized controlled trials evaluating the diagnostic accuracy of a marker frequently collect information on baseline covariates in addition to information on the marker and the reference standard. However, standard estimators of sensitivity and specificity do not use data on baseline covariates and restrict the analysis to data from participants with a positive reference standard in the intervention arm being evaluated. Covariate-adjusted estimators for marginal treatment effects have been developed and been advocated for by regulatory agencies because they can improve power compared to unadjusted estimators. Despite this, similar covariate-adjusted estimators for marginal sensitivity and specificity have not yet been developed. In this manuscript, we address this gap by developing covariate-adjusted estimators for marginal sensitivity and specificity of a diagnostic test that leverage baseline covariate information. The estimators also use data from all participants, not just participants with a positive reference standard in the intervention arm being evaluated. We derive the asymptotic properties of the estimators and evaluate the finite sample properties of the estimators using simulations and by analyzing data on lung cancer screening.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.