BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae038
Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park
{"title":"A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology.","authors":"Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park","doi":"10.1093/biostatistics/kxae038","DOIUrl":"10.1093/biostatistics/kxae038","url":null,"abstract":"<p><p>Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae021
Xiaoyue Xi, Hélène Ruffieux
{"title":"A modeling framework for detecting and leveraging node-level information in Bayesian network inference.","authors":"Xiaoyue Xi, Hélène Ruffieux","doi":"10.1093/biostatistics/kxae021","DOIUrl":"10.1093/biostatistics/kxae021","url":null,"abstract":"<p><p>Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf015
Jian Sun, Bo Fu
{"title":"Identification and estimation of causal effects with confounders missing not at random.","authors":"Jian Sun, Bo Fu","doi":"10.1093/biostatistics/kxaf015","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf015","url":null,"abstract":"<p><p>Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf002
Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris
{"title":"Connectivity Regression.","authors":"Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris","doi":"10.1093/biostatistics/kxaf002","DOIUrl":"10.1093/biostatistics/kxaf002","url":null,"abstract":"<p><p>Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf027
Saurabh Bhandari, Michael J Daniels, Maria Josefsson, Donald M Lloyd-Jones, Juned Siddique
{"title":"A Bayesian semi-parametric approach to causal mediation for longitudinal mediators and time-to-event outcomes with application to a cardiovascular disease cohort study.","authors":"Saurabh Bhandari, Michael J Daniels, Maria Josefsson, Donald M Lloyd-Jones, Juned Siddique","doi":"10.1093/biostatistics/kxaf027","DOIUrl":"10.1093/biostatistics/kxaf027","url":null,"abstract":"<p><p>Causal mediation analysis of observational data is an important tool for investigating the potential causal effects of medications on disease-related risk factors, and on time-to-death (or disease progression) through these risk factors. However, when analyzing data from a cohort study, such analyses are complicated by the longitudinal structure of the risk factors and the presence of time-varying confounders. Leveraging data from the Atherosclerosis Risk in Communities (ARIC) cohort study, we develop a causal mediation approach, using (semi-parametric) Bayesian Additive Regression Tree (BART) models for the longitudinal and survival data. Our framework is developed using static longitudinal exposure regimes and allows for time-varying confounders and mediators, both of which can be either continuous or binary. We also identify and estimate direct and indirect causal effects in the presence of a competing event. We apply our methods to assess how medication, prescribed to target cardiovascular disease (CVD) risk factors, affects the time-to-CVD death.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145193833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bayesian subtyping for multi-state brain functional connectome with application on preadolescent brain cognition.","authors":"Tianqi Chen, Hongyu Zhao, Chichun Tan, Todd Constable, Sarah Yip, Yize Zhao","doi":"10.1093/biostatistics/kxae045","DOIUrl":"10.1093/biostatistics/kxae045","url":null,"abstract":"<p><p>Converging evidence indicates that the heterogeneity of cognitive profiles may arise through detectable alternations in brain functional connectivity. Despite an unprecedented opportunity to uncover neurobiological subtypes through clustering or subtyping analyses on multi-state functional connectivity, few existing approaches are applicable to accommodate the network topology and unique biological architecture. To address this issue, we propose an innovative Bayesian nonparametric network-variate clustering analysis to uncover subgroups of individuals with homogeneous brain functional network patterns under multiple cognitive states. In light of the existing neuroscience literature, we assume there are unknown state-specific modular structures within functional connectivity. Concurrently, we identify informative network features essential for defining subtypes. To further facilitate practical use, we develop a computationally efficient variational inference algorithm to approximate posterior inference with satisfactory estimation accuracy. Extensive simulations show the superiority of our method. We apply the method to the Adolescent Brain Cognitive Development (ABCD) study, and identify neurodevelopmental subtypes and brain sub-network phenotypes under each state to signal neurobiological heterogeneity, suggesting promising directions for further exploration and investigation in neuroscience.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142830270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae013
Qianhan Zeng, Jing Zhou, Ying Ji, Hansheng Wang
{"title":"A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction.","authors":"Qianhan Zeng, Jing Zhou, Ying Ji, Hansheng Wang","doi":"10.1093/biostatistics/kxae013","DOIUrl":"10.1093/biostatistics/kxae013","url":null,"abstract":"<p><p>Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bayesian thresholded modeling for integrating brain node and network predictors.","authors":"Zhe Sun, Wanwan Xu, Tianxi Li, Jian Kang, Gregorio Alanis-Lobato, Yize Zhao","doi":"10.1093/biostatistics/kxae048","DOIUrl":"10.1093/biostatistics/kxae048","url":null,"abstract":"<p><p>Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics. However, limited research has been conducted to integrate these different hierarchies and achieve a better understanding of the neurobiological mechanisms and communications. In this work, we address this literature gap by proposing a Bayesian regression model under both vector-variate and matrix-variate predictors. To characterize the interplay between different predicting components, we propose a set of biologically plausible prior models centered on an innovative joint thresholded prior. This captures the coupling and grouping effect of signal patterns, as well as their spatial contiguity across brain anatomy. By developing a posterior inference, we can identify and quantify the uncertainty of signaling node- and network-level neuromarkers, as well as their predictive mechanism for phenotypic outcomes. Through extensive simulations, we demonstrate that our proposed method outperforms the alternative approaches substantially in both out-of-sample prediction and feature selection. By implementing the model to study children's general mental abilities, we establish a powerful predictive mechanism based on the identified task contrast traits and resting-state sub-networks.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxae025
Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian
{"title":"Estimating causal effects for binary outcomes using per-decision inverse probability weighting.","authors":"Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian","doi":"10.1093/biostatistics/kxae025","DOIUrl":"10.1093/biostatistics/kxae025","url":null,"abstract":"<p><p>Micro-randomized trials are commonly conducted for optimizing mobile health interventions such as push notifications for behavior change. In analyzing such trials, causal excursion effects are often of primary interest, and their estimation typically involves inverse probability weighting (IPW). However, in a micro-randomized trial, additional treatments can often occur during the time window over which an outcome is defined, and this can greatly inflate the variance of the causal effect estimator because IPW would involve a product of numerous weights. To reduce variance and improve estimation efficiency, we propose two new estimators using a modified version of IPW, which we call \"per-decision IPW.\" The second estimator further improves efficiency using the projection idea from the semiparametric efficiency theory. These estimators are applicable when the outcome is binary and can be expressed as the maximum of a series of sub-outcomes defined over sub-intervals of time. We establish the estimators' consistency and asymptotic normality. Through simulation studies and real data applications, we demonstrate substantial efficiency improvement of the proposed estimator over existing estimators. The new estimators can be used to improve the precision of primary and secondary analyses for micro-randomized trials with binary outcomes.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-12-31DOI: 10.1093/biostatistics/kxaf022
Amanda F Mejia, David Bolin, Daniel A Spencer, Ani Eloyan
{"title":"Leveraging population information in brain connectivity via Bayesian ICA with a novel informative prior for correlation matrices.","authors":"Amanda F Mejia, David Bolin, Daniel A Spencer, Ani Eloyan","doi":"10.1093/biostatistics/kxaf022","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf022","url":null,"abstract":"<p><p>Brain functional connectivity (FC), the temporal synchrony between brain networks, is essential to understand the functional organization of the brain and to identify changes due to neurological disorders, development, treatment, and other phenomena. Independent component analysis (ICA) is a matrix decomposition method used extensively for simultaneous estimation of functional brain topography and connectivity. However, estimation of FC via ICA is often sub-optimal due to the use of ad hoc estimation methods or temporal dimension reduction prior to ICA. Bayesian ICA can avoid dimension reduction, estimate latent variables and model parameters more accurately, and facilitate posterior inference. In this article, we develop a novel, computationally feasible Bayesian ICA method with population-derived priors on both the spatial ICs and their temporal correlation (that is, their FC). For the latter, we consider two priors: the inverse-Wishart, which is conjugate but is not ideally suited for modeling correlation matrices; and a novel informative prior for correlation matrices. For each prior, we derive a variational Bayes algorithm to estimate the model variables and facilitate posterior inference. Through extensive simulation studies, we evaluate the performance of the proposed methods and benchmark against existing approaches. We also analyze fMRI data from over 400 healthy adults in the Human Connectome Project. We find that our Bayesian ICA model and algorithms result in more accurate measures of functional connectivity and spatial brain features. Our novel prior for correlation matrices is more computationally intensive than the inverse-Wishart but provides improved accuracy and inference. The proposed framework is applicable to single-subject analysis, making it potentially clinically viable.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372588/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144979622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}