Biostatistics最新文献

筛选
英文 中文
A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology. 在环境流行病学中考虑暴露测量误差的可扩展两阶段贝叶斯方法。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae038
Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park
{"title":"A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology.","authors":"Changwoo J Lee, Elaine Symanski, Amal Rammah, Dong Hun Kang, Philip K Hopke, Eun Sug Park","doi":"10.1093/biostatistics/kxae038","DOIUrl":"10.1093/biostatistics/kxae038","url":null,"abstract":"<p><p>Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide [NO2])-specific exposures and birth weight of full-term infants born in 2012 in Harris County, Texas, using several approaches, including the newly developed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity. 具有个体异质性的部分观测随机流行病的随机 EM 算法。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae018
Fan Bu, Allison E Aiello, Alexander Volfovsky, Jason Xu
{"title":"Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity.","authors":"Fan Bu, Allison E Aiello, Alexander Volfovsky, Jason Xu","doi":"10.1093/biostatistics/kxae018","DOIUrl":"10.1093/biostatistics/kxae018","url":null,"abstract":"<p><p>We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting distributions of physical activity profiles in the National Health and Nutrition Examination Survey database using a partially linear Fréchet single index model. 使用部分线性fr<s:1>单指数模型预测国家健康和营养检查调查数据库中身体活动概况的分布。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf013
Marcos Matabuena, Aritra Ghosal, Wendy Meiring, Alexander Petersen
{"title":"Predicting distributions of physical activity profiles in the National Health and Nutrition Examination Survey database using a partially linear Fréchet single index model.","authors":"Marcos Matabuena, Aritra Ghosal, Wendy Meiring, Alexander Petersen","doi":"10.1093/biostatistics/kxaf013","DOIUrl":"10.1093/biostatistics/kxaf013","url":null,"abstract":"<p><p>Object-oriented data analysis is a fascinating and evolving field in modern statistical science, with the potential to make significant contributions to biomedical applications. This statistical framework facilitates the development of new methods to analyze complex data objects that capture more information than traditional clinical biomarkers. This paper applies the object-oriented framework to analyze physical activity levels, measured by accelerometers, as response objects in a regression model. Unlike traditional summary metrics, we utilize a recently proposed representation of physical activity data as a distributional object, providing a more nuanced and complete profile of individual energy expenditure across all ranges of monitoring intensity. A novel hybrid Fréchet regression model is proposed and applied to US population accelerometer data from National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. The semi-parametric nature of the model allows for the inclusion of nonlinear effects for critical variables, such as age, which are biologically known to have subtle impacts on physical activity. Simultaneously, the inclusion of linear effects preserves interpretability for other variables, particularly categorical covariates such as ethnicity and sex. The results obtained are valuable from a public health perspective and could lead to new strategies for optimizing physical activity interventions in specific American subpopulations.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporating historic information to further improve power when conducting Bayesian information borrowing in basket trials. 在篮子试验中引入历史信息,进一步提高贝叶斯信息的有效性。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf016
Libby Daniells, Pavel Mozgunov, Helen Barnett, Alun Bedding, Thomas Jaki
{"title":"Incorporating historic information to further improve power when conducting Bayesian information borrowing in basket trials.","authors":"Libby Daniells, Pavel Mozgunov, Helen Barnett, Alun Bedding, Thomas Jaki","doi":"10.1093/biostatistics/kxaf016","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf016","url":null,"abstract":"<p><p>In basket trials a single therapeutic treatment is tested on several patient populations simultaneously, each of which forming a basket, where patients across all baskets on the trial share a common genetic aberration. These trials allow testing of treatments on small groups of patients, however, limited basket sample sizes can result in inadequate precision and power of estimates. It is well known that Bayesian information borrowing models such as the exchangeability-nonexchangeability (EXNEX) model can be implemented to tackle such a problem, drawing on information from one basket when making inference in another. An alternative approach to improve power of estimates, is to incorporate any historical or external information available. This paper considers models that amalgamate both forms of information borrowing, allowing borrowing between baskets in the ongoing trial whilst also drawing on response data from historical sources, with the aim to further improve treatment effect estimates. We propose several Bayesian information borrowing approaches that incorporate historical information into the model. These methods are data-driven, updating the degree of borrowing based on the level of homogeneity between information sources. A thorough simulation study is presented to draw comparisons between the proposed approaches, whilst also comparing to the standard EXNEX model in which no historical information is utilized. The models are also applied to a real-life trial example to demonstrate their performance in practice. We show that the incorporation of historic data under the novel approaches can lead to a substantial improvement in precision and power of treatment effect estimates when such data is homogeneous to the responses in the ongoing trial. Under some approaches, this came alongside an inflation in type I error rate in cases of heterogeneity. However, the use of a power prior in the EXNEX model is shown to increase power and precision, whilst maintaining similar error rates to the standard EXNEX model.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144327836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modeling framework for detecting and leveraging node-level information in Bayesian network inference. 在贝叶斯网络推理中检测和利用节点级信息的建模框架。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae021
Xiaoyue Xi, Hélène Ruffieux
{"title":"A modeling framework for detecting and leveraging node-level information in Bayesian network inference.","authors":"Xiaoyue Xi, Hélène Ruffieux","doi":"10.1093/biostatistics/kxae021","DOIUrl":"10.1093/biostatistics/kxae021","url":null,"abstract":"<p><p>Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian subtyping for multi-state brain functional connectome with application on preadolescent brain cognition. 多状态脑功能连接体贝叶斯分型及其在青春期前脑认知中的应用。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae045
Tianqi Chen, Hongyu Zhao, Chichun Tan, Todd Constable, Sarah Yip, Yize Zhao
{"title":"Bayesian subtyping for multi-state brain functional connectome with application on preadolescent brain cognition.","authors":"Tianqi Chen, Hongyu Zhao, Chichun Tan, Todd Constable, Sarah Yip, Yize Zhao","doi":"10.1093/biostatistics/kxae045","DOIUrl":"10.1093/biostatistics/kxae045","url":null,"abstract":"<p><p>Converging evidence indicates that the heterogeneity of cognitive profiles may arise through detectable alternations in brain functional connectivity. Despite an unprecedented opportunity to uncover neurobiological subtypes through clustering or subtyping analyses on multi-state functional connectivity, few existing approaches are applicable to accommodate the network topology and unique biological architecture. To address this issue, we propose an innovative Bayesian nonparametric network-variate clustering analysis to uncover subgroups of individuals with homogeneous brain functional network patterns under multiple cognitive states. In light of the existing neuroscience literature, we assume there are unknown state-specific modular structures within functional connectivity. Concurrently, we identify informative network features essential for defining subtypes. To further facilitate practical use, we develop a computationally efficient variational inference algorithm to approximate posterior inference with satisfactory estimation accuracy. Extensive simulations show the superiority of our method. We apply the method to the Adolescent Brain Cognitive Development (ABCD) study, and identify neurodevelopmental subtypes and brain sub-network phenotypes under each state to signal neurobiological heterogeneity, suggesting promising directions for further exploration and investigation in neuroscience.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142830270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectivity Regression. 连接回归。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf002
Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris
{"title":"Connectivity Regression.","authors":"Neel Desai, Veera Baladandayuthapani, Russell T Shinohara, Jeffrey S Morris","doi":"10.1093/biostatistics/kxaf002","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf002","url":null,"abstract":"<p><p>Assessing how brain functional connectivity networks vary across individuals promises to uncover important scientific questions such as patterns of healthy brain aging through the lifespan or dysconnectivity associated with disease. In this article, we introduce a general regression framework, Connectivity Regression (ConnReg), for regressing subject-specific functional connectivity networks on covariates while accounting for within-network inter-edge dependence. ConnReg utilizes a multivariate generalization of Fisher's transformation to project network objects into an alternative space where Gaussian assumptions are justified and positive semidefinite constraints are automatically satisfied. Penalized multivariate regression is fit in the transformed space to simultaneously induce sparsity in regression coefficients and in covariance elements, which capture within network inter-edge dependence. We use permutation tests to perform multiplicity-adjusted inference to identify covariates associated with connectivity, and stability selection scores to identify network edges that vary with selected covariates. Simulation studies validate the inferential properties of our proposed method and demonstrate how estimating and accounting for within-network inter-edge dependence leads to more efficient estimation, more powerful inference, and more accurate selection of covariate-dependent network edges. We apply ConnReg to the Human Connectome Project Young Adult study, revealing insights into how connectivity varies with language processing covariates and structural brain features.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and estimation of causal effects with confounders missing not at random. 非随机缺失混杂因素的因果效应识别和估计。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxaf015
Jian Sun, Bo Fu
{"title":"Identification and estimation of causal effects with confounders missing not at random.","authors":"Jian Sun, Bo Fu","doi":"10.1093/biostatistics/kxaf015","DOIUrl":"https://doi.org/10.1093/biostatistics/kxaf015","url":null,"abstract":"<p><p>Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian thresholded modeling for integrating brain node and network predictors. 脑节点和网络预测器集成的贝叶斯阈值建模。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae048
Zhe Sun, Wanwan Xu, Tianxi Li, Jian Kang, Gregorio Alanis-Lobato, Yize Zhao
{"title":"Bayesian thresholded modeling for integrating brain node and network predictors.","authors":"Zhe Sun, Wanwan Xu, Tianxi Li, Jian Kang, Gregorio Alanis-Lobato, Yize Zhao","doi":"10.1093/biostatistics/kxae048","DOIUrl":"10.1093/biostatistics/kxae048","url":null,"abstract":"<p><p>Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics. However, limited research has been conducted to integrate these different hierarchies and achieve a better understanding of the neurobiological mechanisms and communications. In this work, we address this literature gap by proposing a Bayesian regression model under both vector-variate and matrix-variate predictors. To characterize the interplay between different predicting components, we propose a set of biologically plausible prior models centered on an innovative joint thresholded prior. This captures the coupling and grouping effect of signal patterns, as well as their spatial contiguity across brain anatomy. By developing a posterior inference, we can identify and quantify the uncertainty of signaling node- and network-level neuromarkers, as well as their predictive mechanism for phenotypic outcomes. Through extensive simulations, we demonstrate that our proposed method outperforms the alternative approaches substantially in both out-of-sample prediction and feature selection. By implementing the model to study children's general mental abilities, we establish a powerful predictive mechanism based on the identified task contrast traits and resting-state sub-networks.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating causal effects for binary outcomes using per-decision inverse probability weighting. 使用每次决定的反概率加权法估算二元结果的因果效应。
IF 1.8 3区 数学
Biostatistics Pub Date : 2024-12-31 DOI: 10.1093/biostatistics/kxae025
Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian
{"title":"Estimating causal effects for binary outcomes using per-decision inverse probability weighting.","authors":"Yihan Bao, Lauren Bell, Elizabeth Williamson, Claire Garnett, Tianchen Qian","doi":"10.1093/biostatistics/kxae025","DOIUrl":"10.1093/biostatistics/kxae025","url":null,"abstract":"<p><p>Micro-randomized trials are commonly conducted for optimizing mobile health interventions such as push notifications for behavior change. In analyzing such trials, causal excursion effects are often of primary interest, and their estimation typically involves inverse probability weighting (IPW). However, in a micro-randomized trial, additional treatments can often occur during the time window over which an outcome is defined, and this can greatly inflate the variance of the causal effect estimator because IPW would involve a product of numerous weights. To reduce variance and improve estimation efficiency, we propose two new estimators using a modified version of IPW, which we call \"per-decision IPW.\" The second estimator further improves efficiency using the projection idea from the semiparametric efficiency theory. These estimators are applicable when the outcome is binary and can be expressed as the maximum of a series of sub-outcomes defined over sub-intervals of time. We establish the estimators' consistency and asymptotic normality. Through simulation studies and real data applications, we demonstrate substantial efficiency improvement of the proposed estimator over existing estimators. The new estimators can be used to improve the precision of primary and secondary analyses for micro-randomized trials with binary outcomes.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信