BiostatisticsPub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae002
Grace Rhodes, Marie Davidian, Wenbin Lu
{"title":"Estimation of optimal treatment regimes with electronic medical record data using the residual life value estimator.","authors":"Grace Rhodes, Marie Davidian, Wenbin Lu","doi":"10.1093/biostatistics/kxae002","DOIUrl":"10.1093/biostatistics/kxae002","url":null,"abstract":"<p><p>Clinicians and patients must make treatment decisions at a series of key decision points throughout disease progression. A dynamic treatment regime is a set of sequential decision rules that return treatment decisions based on accumulating patient information, like that commonly found in electronic medical record (EMR) data. When applied to a patient population, an optimal treatment regime leads to the most favorable outcome on average. Identifying optimal treatment regimes that maximize residual life is especially desirable for patients with life-threatening diseases such as sepsis, a complex medical condition that involves severe infections with organ dysfunction. We introduce the residual life value estimator (ReLiVE), an estimator for the expected value of cumulative restricted residual life under a fixed treatment regime. Building on ReLiVE, we present a method for estimating an optimal treatment regime that maximizes expected cumulative restricted residual life. Our proposed method, ReLiVE-Q, conducts estimation via the backward induction algorithm Q-learning. We illustrate the utility of ReLiVE-Q in simulation studies, and we apply ReLiVE-Q to estimate an optimal treatment regime for septic patients in the intensive care unit using EMR data from the Multiparameter Intelligent Monitoring Intensive Care database. Ultimately, we demonstrate that ReLiVE-Q leverages accumulating patient information to estimate personalized treatment regimes that optimize a clinically meaningful function of residual life.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Signal detection statistics of adverse drug events in hierarchical structure for matched case-control data.","authors":"Seok-Jae Heo, Sohee Jeong, Dagyeom Jung, Inkyung Jung","doi":"10.1093/biostatistics/kxad029","DOIUrl":"10.1093/biostatistics/kxad029","url":null,"abstract":"<p><p>The tree-based scan statistic is a data mining method used to identify signals of adverse drug reactions in a database of spontaneous reporting systems. It is particularly beneficial when dealing with hierarchical data structures. One may use a retrospective case-control study design from spontaneous reporting systems (SRS) to investigate whether a specific adverse event of interest is associated with certain drugs. However, the existing Bernoulli model of the tree-based scan statistic may not be suitable as it fails to adequately account for dependencies within matched pairs. In this article, we propose signal detection statistics for matched case-control data based on McNemar's test, Wald test for conditional logistic regression, and the likelihood ratio test for a multinomial distribution. Through simulation studies, we demonstrate that our proposed methods outperform the existing approach in terms of the type I error rate, power, sensitivity, and false detection rate. To illustrate our proposed approach, we applied the three methods and the existing method to detect drug signals for dizziness-related adverse events related to antihypertensive drugs using the database of the Korea Adverse Event Reporting System.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54232410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-10-01DOI: 10.1093/biostatistics/kxae011
Trang Quynh Nguyen, Michelle C Carlson, Elizabeth A Stuart
{"title":"Identification of complier and noncomplier average causal effects in the presence of latent missing-at-random (LMAR) outcomes: a unifying view and choices of assumptions.","authors":"Trang Quynh Nguyen, Michelle C Carlson, Elizabeth A Stuart","doi":"10.1093/biostatistics/kxae011","DOIUrl":"10.1093/biostatistics/kxae011","url":null,"abstract":"<p><p>The study of treatment effects is often complicated by noncompliance and missing data. In the one-sided noncompliance setting where of interest are the complier and noncomplier average causal effects, we address outcome missingness of the latent missing at random type (LMAR, also known as latent ignorability). That is, conditional on covariates and treatment assigned, the missingness may depend on compliance type. Within the instrumental variable (IV) approach to noncompliance, methods have been proposed for handling LMAR outcome that additionally invoke an exclusion restriction-type assumption on missingness, but no solution has been proposed for when a non-IV approach is used. This article focuses on effect identification in the presence of LMAR outcomes, with a view to flexibly accommodate different principal identification approaches. We show that under treatment assignment ignorability and LMAR only, effect nonidentifiability boils down to a set of two connected mixture equations involving unidentified stratum-specific response probabilities and outcome means. This clarifies that (except for a special case) effect identification generally requires two additional assumptions: a specific missingness mechanism assumption and a principal identification assumption. This provides a template for identifying effects based on separate choices of these assumptions. We consider a range of specific missingness assumptions, including those that have appeared in the literature and some new ones. Incidentally, we find an issue in the existing assumptions, and propose a modification of the assumptions to avoid the issue. Results under different assumptions are illustrated using data from the Baltimore Experience Corps Trial.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-09-14DOI: 10.1093/biostatistics/kxae034
Mengyi Lu, Ying Yuan, Suyu Liu
{"title":"A Bayesian pharmacokinetics integrated phase I–II design to optimize dose-schedule regimes","authors":"Mengyi Lu, Ying Yuan, Suyu Liu","doi":"10.1093/biostatistics/kxae034","DOIUrl":"https://doi.org/10.1093/biostatistics/kxae034","url":null,"abstract":"The schedule of administering a drug has profound impact on the toxicity and efficacy profiles of the drug through changing its pharmacokinetics (PK). PK is an innate and indispensable component of the dose-schedule optimization. Motivated by this, we propose a Bayesian PK integrated dose-schedule finding (PKIDS) design to identify the optimal dose-schedule regime by integrating PK, toxicity, and efficacy data. Based on the causal pathway that dose and schedule affect PK, which in turn affects efficacy and toxicity, we jointly model the three endpoints by first specifying a Bayesian hierarchical model for the marginal distribution of the longitudinal dose-concentration process. Conditional on the drug concentration in plasma, we jointly model toxicity and efficacy as a function of the concentration. We quantify the risk-benefit of regimes using utility—continuously updating the estimates of PK, toxicity, and efficacy based on interim data—and make adaptive decisions to assign new patients to appropriate dose-schedule regimes via adaptive randomization. The simulation study shows that the PKIDS design has desirable operating characteristics.","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-09-10DOI: 10.1093/biostatistics/kxae035
Maximilian Bardo, Niel Hens, Steffen Unkel
{"title":"On the Addams family of discrete frailty distributions for modeling multivariate case I interval-censored data","authors":"Maximilian Bardo, Niel Hens, Steffen Unkel","doi":"10.1093/biostatistics/kxae035","DOIUrl":"https://doi.org/10.1093/biostatistics/kxae035","url":null,"abstract":"Random effect models for time-to-event data, also known as frailty models, provide a conceptually appealing way of quantifying association between survival times and of representing heterogeneities resulting from factors which may be difficult or impossible to measure. In the literature, the random effect is usually assumed to have a continuous distribution. However, in some areas of application, discrete frailty distributions may be more appropriate. The present paper is about the implementation and interpretation of the Addams family of discrete frailty distributions. We propose methods of estimation for this family of densities in the context of shared frailty models for the hazard rates for case I interval-censored data. Our optimization framework allows for stratification of random effect distributions by covariates. We highlight interpretational advantages of the Addams family of discrete frailty distributions and theK-point distribution as compared to other frailty distributions. A unique feature of the Addams family and the K-point distribution is that the support of the frailty distribution depends on its parameters. This feature is best exploited by imposing a model on the distributional parameters, resulting in a model with non-homogeneous covariate effects that can be analyzed using standard measures such as the hazard ratio. Our methods are illustrated with applications to multivariate case I interval-censored infection data.","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-09-10DOI: 10.1093/biostatistics/kxae032
Yen Chang, Anastasia Ivanova, Demetrius Albanes, Jason P Fine, Yei Eun Shin
{"title":"Pooling controls from nested case–control studies with the proportional risks model","authors":"Yen Chang, Anastasia Ivanova, Demetrius Albanes, Jason P Fine, Yei Eun Shin","doi":"10.1093/biostatistics/kxae032","DOIUrl":"https://doi.org/10.1093/biostatistics/kxae032","url":null,"abstract":"The standard approach to regression modeling for cause-specific hazards with prospective competing risks data specifies separate models for each failure type. An alternative proposed by Lunn and McNeil (1995) assumes the cause-specific hazards are proportional across causes. This may be more efficient than the standard approach, and allows the comparison of covariate effects across causes. In this paper, we extend Lunn and McNeil (1995) to nested case–control studies, accommodating scenarios with additional matching and non-proportionality. We also consider the case where data for different causes are obtained from different studies conducted in the same cohort. It is demonstrated that while only modest gains in efficiency are possible in full cohort analyses, substantial gains may be attained in nested case–control analyses for failure types that are relatively rare. Extensive simulation studies are conducted and real data analyses are provided using the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) study.","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-09-10DOI: 10.1093/biostatistics/kxae036
Wen Li,Ruosha Li,Ziding Feng,Jing Ning,
{"title":"Dynamic and concordance-assisted learning for risk stratification with application to Alzheimer's disease.","authors":"Wen Li,Ruosha Li,Ziding Feng,Jing Ning,","doi":"10.1093/biostatistics/kxae036","DOIUrl":"https://doi.org/10.1093/biostatistics/kxae036","url":null,"abstract":"Dynamic prediction models capable of retaining accuracy by evolving over time could play a significant role for monitoring disease progression in clinical practice. In biomedical studies with long-term follow up, participants are often monitored through periodic clinical visits with repeat measurements until an occurrence of the event of interest (e.g. disease onset) or the study end. Acknowledging the dynamic nature of disease risk and clinical information contained in the longitudinal markers, we propose an innovative concordance-assisted learning algorithm to derive a real-time risk stratification score. The proposed approach bypasses the need to fit regression models, such as joint models of the longitudinal markers and time-to-event outcome, and hence enjoys the desirable property of model robustness. Simulation studies confirmed that the proposed method has satisfactory performance in dynamically monitoring the risk of developing disease and differentiating high-risk and low-risk population over time. We apply the proposed method to the Alzheimer's Disease Neuroimaging Initiative data and develop a dynamic risk score of Alzheimer's Disease for patients with mild cognitive impairment using multiple longitudinal markers and baseline prognostic factors.","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-09-03DOI: 10.1093/biostatistics/kxae033
Xingche Guo, Donglin Zeng, Yuanjia Wang
{"title":"HMM for discovering decision-making dynamics using reinforcement learning experiments.","authors":"Xingche Guo, Donglin Zeng, Yuanjia Wang","doi":"10.1093/biostatistics/kxae033","DOIUrl":"https://doi.org/10.1093/biostatistics/kxae033","url":null,"abstract":"<p><p>Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiostatisticsPub Date : 2024-08-14DOI: 10.1093/biostatistics/kxae031
Ying Huang, Dean Follmann
{"title":"Exposure proximal immune correlates analysis.","authors":"Ying Huang, Dean Follmann","doi":"10.1093/biostatistics/kxae031","DOIUrl":"10.1093/biostatistics/kxae031","url":null,"abstract":"<p><p>Immune response decays over time, and vaccine-induced protection often wanes. Understanding how vaccine efficacy changes over time is critical to guiding the development and application of vaccines in preventing infectious diseases. The objective of this article is to develop statistical methods that assess the effect of decaying immune responses on the risk of disease and on vaccine efficacy, within the context of Cox regression with sparse sampling of immune responses, in a baseline-naive population. We aim to further disentangle the various aspects of the time-varying vaccine effect, whether direct on disease or mediated through immune responses. Based on time-to-event data from a vaccine efficacy trial and sparse sampling of longitudinal immune responses, we propose a weighted estimated induced likelihood approach that models the longitudinal immune response trajectory and the time to event separately. This approach assesses the effects of the decaying immune response, the peak immune response, and/or the waning vaccine effect on the risk of disease. The proposed method is applicable not only to standard randomized trial designs but also to augmented vaccine trial designs that re-vaccinate uninfected placebo recipients at the end of the standard trial period. We conducted simulation studies to evaluate the performance of our method and applied the method to analyze immune correlates from a phase III SARS-CoV-2 vaccine trial.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}