{"title":"Exposure proximal immune correlates analysis.","authors":"Ying Huang, Dean Follmann","doi":"10.1093/biostatistics/kxae031","DOIUrl":null,"url":null,"abstract":"<p><p>Immune response decays over time, and vaccine-induced protection often wanes. Understanding how vaccine efficacy changes over time is critical to guiding the development and application of vaccines in preventing infectious diseases. The objective of this article is to develop statistical methods that assess the effect of decaying immune responses on the risk of disease and on vaccine efficacy, within the context of Cox regression with sparse sampling of immune responses, in a baseline-naive population. We aim to further disentangle the various aspects of the time-varying vaccine effect, whether direct on disease or mediated through immune responses. Based on time-to-event data from a vaccine efficacy trial and sparse sampling of longitudinal immune responses, we propose a weighted estimated induced likelihood approach that models the longitudinal immune response trajectory and the time to event separately. This approach assesses the effects of the decaying immune response, the peak immune response, and/or the waning vaccine effect on the risk of disease. The proposed method is applicable not only to standard randomized trial designs but also to augmented vaccine trial designs that re-vaccinate uninfected placebo recipients at the end of the standard trial period. We conducted simulation studies to evaluate the performance of our method and applied the method to analyze immune correlates from a phase III SARS-CoV-2 vaccine trial.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune response decays over time, and vaccine-induced protection often wanes. Understanding how vaccine efficacy changes over time is critical to guiding the development and application of vaccines in preventing infectious diseases. The objective of this article is to develop statistical methods that assess the effect of decaying immune responses on the risk of disease and on vaccine efficacy, within the context of Cox regression with sparse sampling of immune responses, in a baseline-naive population. We aim to further disentangle the various aspects of the time-varying vaccine effect, whether direct on disease or mediated through immune responses. Based on time-to-event data from a vaccine efficacy trial and sparse sampling of longitudinal immune responses, we propose a weighted estimated induced likelihood approach that models the longitudinal immune response trajectory and the time to event separately. This approach assesses the effects of the decaying immune response, the peak immune response, and/or the waning vaccine effect on the risk of disease. The proposed method is applicable not only to standard randomized trial designs but also to augmented vaccine trial designs that re-vaccinate uninfected placebo recipients at the end of the standard trial period. We conducted simulation studies to evaluate the performance of our method and applied the method to analyze immune correlates from a phase III SARS-CoV-2 vaccine trial.
免疫反应会随着时间的推移而衰减,疫苗诱导的保护作用往往会减弱。了解疫苗效力如何随时间而变化,对于指导疫苗的开发和应用以预防传染病至关重要。本文旨在开发统计方法,在对基线免疫人群的免疫反应进行稀疏采样的考克斯回归背景下,评估衰减的免疫反应对疾病风险和疫苗效力的影响。我们的目标是进一步厘清疫苗时变效应的各个方面,无论是直接影响疾病还是通过免疫反应介导。基于疫苗疗效试验的事件发生时间数据和纵向免疫反应的稀疏采样,我们提出了一种加权估计诱导似然法,该方法对纵向免疫反应轨迹和事件发生时间分别建模。这种方法可评估免疫反应衰减、免疫反应高峰和/或疫苗效果减弱对疾病风险的影响。所提出的方法不仅适用于标准随机试验设计,也适用于在标准试验期结束时对未感染的安慰剂受试者进行再接种的增强疫苗试验设计。我们进行了模拟研究来评估我们的方法的性能,并将该方法应用于分析 SARS-CoV-2 疫苗 III 期试验的免疫相关性。
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.