数据缺失情况下个性化治疗规则的鲁棒迁移学习。

IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Zhiyu Sui, Ying Ding, Lu Tang
{"title":"数据缺失情况下个性化治疗规则的鲁棒迁移学习。","authors":"Zhiyu Sui, Ying Ding, Lu Tang","doi":"10.1093/biostatistics/kxaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Individualized treatment rule (ITR) is a stepping stone to precision medicine. To ensure validity, ITRs are ideally derived from randomized trial data, but the use cases of ITRs extend beyond these trial populations. Transferring knowledge from experimental data to real-world data is of interest, while experimental data with selective inclusion criteria reflect a population distribution that may differ from the real-world target. In well-designed experiments, granular information crucial to decision making can be thoroughly collected. However, part of this may not be accessible in real-world scenarios. We propose a learning scheme for ITR that simultaneously addresses the issues of covariate shift and missing covariates with a quantile-based optimal treatment objective. Specifically, we compare the outcome uncertainty across treatment arms that is due to missing covariates and use it to guide treatment selection to reduce the likelihood of worse outcomes. The performance of this method is evaluated in simulations and a sepsis data application.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust transfer learning for individualized treatment rules in the presence of missing data.\",\"authors\":\"Zhiyu Sui, Ying Ding, Lu Tang\",\"doi\":\"10.1093/biostatistics/kxaf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individualized treatment rule (ITR) is a stepping stone to precision medicine. To ensure validity, ITRs are ideally derived from randomized trial data, but the use cases of ITRs extend beyond these trial populations. Transferring knowledge from experimental data to real-world data is of interest, while experimental data with selective inclusion criteria reflect a population distribution that may differ from the real-world target. In well-designed experiments, granular information crucial to decision making can be thoroughly collected. However, part of this may not be accessible in real-world scenarios. We propose a learning scheme for ITR that simultaneously addresses the issues of covariate shift and missing covariates with a quantile-based optimal treatment objective. Specifically, we compare the outcome uncertainty across treatment arms that is due to missing covariates and use it to guide treatment selection to reduce the likelihood of worse outcomes. The performance of this method is evaluated in simulations and a sepsis data application.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxaf023\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf023","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

个体化治疗规则(ITR)是实现精准医疗的基石。为了确保有效性,itr的理想来源是随机试验数据,但itr的用例超出了这些试验人群。将知识从实验数据转移到现实世界数据是一个有趣的问题,而具有选择性纳入标准的实验数据反映了可能与现实世界目标不同的总体分布。在设计良好的实验中,可以彻底收集到对决策至关重要的细粒度信息。然而,其中一部分可能无法在实际场景中实现。我们提出了一种ITR的学习方案,该方案同时解决了协变量移位和缺失协变量的问题,具有基于分位数的最佳治疗目标。具体来说,我们比较了由于缺少协变量而导致的治疗组的结果不确定性,并用它来指导治疗选择,以减少不良结果的可能性。在仿真和脓毒症数据应用中评估了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust transfer learning for individualized treatment rules in the presence of missing data.

Individualized treatment rule (ITR) is a stepping stone to precision medicine. To ensure validity, ITRs are ideally derived from randomized trial data, but the use cases of ITRs extend beyond these trial populations. Transferring knowledge from experimental data to real-world data is of interest, while experimental data with selective inclusion criteria reflect a population distribution that may differ from the real-world target. In well-designed experiments, granular information crucial to decision making can be thoroughly collected. However, part of this may not be accessible in real-world scenarios. We propose a learning scheme for ITR that simultaneously addresses the issues of covariate shift and missing covariates with a quantile-based optimal treatment objective. Specifically, we compare the outcome uncertainty across treatment arms that is due to missing covariates and use it to guide treatment selection to reduce the likelihood of worse outcomes. The performance of this method is evaluated in simulations and a sepsis data application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信