Maren Kahl, Daniel J. Morgan, Carl Thornber, Richard Walshaw, Kendra J. Lynn, Frank A. Trusdell
{"title":"Dynamics of magma mixing and magma mobilisation beneath Mauna Loa—insights from the 1950 AD Southwest Rift Zone eruption","authors":"Maren Kahl, Daniel J. Morgan, Carl Thornber, Richard Walshaw, Kendra J. Lynn, Frank A. Trusdell","doi":"10.1007/s00445-023-01680-x","DOIUrl":"https://doi.org/10.1007/s00445-023-01680-x","url":null,"abstract":"<p>Eruptions from Mauna Loa’s Southwest Rift Zone (SWRZ) pose a significant threat to nearby communities due to high eruption rates and steep slopes resulting in little time for evacuation. Despite the large body of research done on Mauna Loa, knowledge of the timing and duration of magma residence and transfer through its internal plumbing system is still poorly constrained. This study presents a first quantitative look at thermochemical conditions and timescales of potentially deep storage and disaggregation of magmatic mush during the run-up to the voluminous 1950 AD SWRZ eruption. Details of heterogeneous compositions and textures of the macrocryst and glomerocryst cargo in 1950 AD lavas suggest magma mixing and crystal recycling along the entire plumbing system. Furthermore, the crystal cargo contains evidence for the direct interaction between primitive, deeply stored magma and pockets of more evolved magma stored at shallow to intermediate depths. An enigmatic attribute of 1950 near-vent lava is the near-ubiquitous presence of subhedral, unreacted Mg-rich orthopyroxene phenocrysts (Mg#>80). Phase relations of Mauna Loa olivine-tholeiite indicate that orthopyroxene joins olivine as a primary phase at pressures higher than 0.6 GPa. Coexisting Mg-rich olivine and orthopyroxene and the occurrence of harzburgitic (olivine-orthopyroxene) glomerocrysts provide evidence for cognate crystallisation at near-Moho (~ 18 km) depths (Thornber and Trusdell 2008). Petrogenetically diverse populations of glomerocrysts and macrocrysts alongside evidence of multilevel magma storage indicate a network of ephemeral and possibly interconnected magma pockets from near-Moho depths to the upper/mid-crust. Fe-Mg diffusion chronometry applied to 1950 AD olivine populations implies rapid mobilisation and transport of large volumes of magma (376×10<sup>6</sup> m<sup>3</sup>) from near-Moho storage to the surface within less than 8 months, with little residence time (~ 2 weeks) in the shallow (3–5 km) plumbing system.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"375 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josh Crozier, Leif Karlstrom, Emily Montgomery-Brown, Mario Angarita, Valérie Cayol, Mary Grace Bato, Taiyi A. Wang, Ronni Grapenthin, Tara Shreve, Kyle Anderson, Ana Astort, Olivier Bodart, Flavio Cannavò, Gilda Currenti, Farshid Dabaghi, Brittany A. Erickson, Deepak Garg, Matthew Head, Adriana Iozzia, Young Cheol Kim, Hélène Le Mével, Camila Novoa Lizama, Cody Rucker, Francesca Silverii, Elisa Trasatti, Yan Zhan
{"title":"Understanding the drivers of volcano deformation through geodetic model verification and validation","authors":"Josh Crozier, Leif Karlstrom, Emily Montgomery-Brown, Mario Angarita, Valérie Cayol, Mary Grace Bato, Taiyi A. Wang, Ronni Grapenthin, Tara Shreve, Kyle Anderson, Ana Astort, Olivier Bodart, Flavio Cannavò, Gilda Currenti, Farshid Dabaghi, Brittany A. Erickson, Deepak Garg, Matthew Head, Adriana Iozzia, Young Cheol Kim, Hélène Le Mével, Camila Novoa Lizama, Cody Rucker, Francesca Silverii, Elisa Trasatti, Yan Zhan","doi":"10.1007/s00445-023-01687-4","DOIUrl":"https://doi.org/10.1007/s00445-023-01687-4","url":null,"abstract":"<p>Volcano geodesy often involves the use of models to explain observed surface deformation. A variety of forward models are used, from analytical point sources to numerical simulations that consider complex magma system geometries, topography, and material properties. Various inversion methods can then be used to relate observed volcano data to models. Ideally, forward models should be verified through intercomparison, to check for implementation errors and quantify the error induced by any approximations used. Additionally, forward models and inversion methods should be validated through tests with synthetic and/or real data, to determine their ability to match data and estimate parameter values within uncertainty. However, to date, there have not been comprehensive verification and validation efforts in volcano geodesy. Here, we report on the first phase of the Drivers of Volcano Deformation (DVD) exercises, which were designed to build community involvement through web-based exercises involving calculations of static elastic displacement around pressurized magma reservoirs. The forward model exercises begin with a spherical reservoir in a homogeneous half space, then introduce topography, heterogeneous elastic properties, and spheroidal geometries. The inversion exercises provide synthetic noisy surface displacement data for a spherical reservoir in a homogeneous half space and assess consistency in estimates of reservoir location and volume/pressure change. There is variability in the results from both forward modeling and inversions, which highlights the strengths and limitations of different forward models, as well as the importance of inversion method choice and uncertainty quantification. This first phase of the DVD exercises serves as a community resource and will facilitate further efforts to develop standards of reproducibility.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"365 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dyke to sill deflection in the shallow heterogeneous crust during glacier retreat: part I","authors":"Kyriaki Drymoni, Alessandro Tibaldi, Fabio Luca Bonali, Federico Aligi Pasquarè Mariotto","doi":"10.1007/s00445-023-01684-7","DOIUrl":"https://doi.org/10.1007/s00445-023-01684-7","url":null,"abstract":"<p>Dykes and sills occupy Mode I (extension), Mode II (shear), or hybrid mode fractures and most of the time transport and store magma from deep reservoirs to the surface. Subject to their successful propagation, they feed volcanic eruptions. Yet, dykes and sills can also stall and become arrested as a result of the crust’s heterogeneous and anisotropic characteristics. Dykes can become deflected at mechanical discontinuities to form sills, and vice versa. Although several studies have examined dyke propagation in heterogeneous and anisotropic crustal segments before, the conditions under which dykes propagate in glacial-volcanotectonic regimes remain unclear. Here, we coupled field observations with 2D FEM numerical modelling to explore the mechanical conditions that encourage (or not) dyke-sill transitions in volcanotectonic or glacial settings. We used as a field example the Stardalur cone sheet-laccolith system, which lies on the Esja peninsula, close to the western rift zone, NW of the southern part of the Icelandic rift. The laccolith is composed of several vertical dykes that transition into sills and form a unique stacked sill ‘flower’ structure. Here, we investigate whether the Stardalur laccolith was formed under the influence of stresses caused by glacial retreat due to thickness variations (0–1 km) in addition to regional and local tectonic stresses (1–3 MPa extension or compression) and varied magma overpressure (1–30 MPa), as well as the influence of the mechanical properties of the lava/hyaloclastite contact. Our results show that the observed field structure in non-glacial regimes was formed as a result of either the mechanical (Young’s modulus) contrast of the lava/hyaloclastite contact or a compressional regime due to pre-existing dykes or faulting. In the glacial domain, the extensional stress field below the ice cap encouraged the formation of the laccolith as the glacier became thinner (subject to a lower vertical load). In all cases, the local stress field influenced dyke to sill deflection in both volcanotectonic regimes.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"372 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle Parks, Freysteinn Sigmundsson, Vincent Drouin, Ásta R. Hjartardóttir, Halldór Geirsson, Andrew Hooper, Kristín S. Vogfjörd, Benedikt G. Ófeigsson, Sigrún Hreinsdóttir, Esther H. Jensen, Páll Einarsson, Sara Barsotti, Hildur M. Fridriksdóttir
{"title":"Correction to: Deformation, seismicity, and monitoring response preceding and during the 2022 Fagradalsfjall eruption, Iceland","authors":"Michelle Parks, Freysteinn Sigmundsson, Vincent Drouin, Ásta R. Hjartardóttir, Halldór Geirsson, Andrew Hooper, Kristín S. Vogfjörd, Benedikt G. Ófeigsson, Sigrún Hreinsdóttir, Esther H. Jensen, Páll Einarsson, Sara Barsotti, Hildur M. Fridriksdóttir","doi":"10.1007/s00445-023-01689-2","DOIUrl":"https://doi.org/10.1007/s00445-023-01689-2","url":null,"abstract":"","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"12 22","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135087073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complex paths of magma propagation at Fernandina (Galápagos): The coexistence of circumferential and radial dike intrusion during the January 2020 eruption","authors":"Federico Galetto","doi":"10.1007/s00445-023-01688-3","DOIUrl":"https://doi.org/10.1007/s00445-023-01688-3","url":null,"abstract":"","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":" 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyriaki Drymoni, John Browning, Panagiotis Pomonis, Andreas Magganas
{"title":"Historical accounts provide insight on the geological evolution of the 20th century eruptions at Santorini volcano, Greece","authors":"Kyriaki Drymoni, John Browning, Panagiotis Pomonis, Andreas Magganas","doi":"10.1007/s00445-023-01681-w","DOIUrl":"https://doi.org/10.1007/s00445-023-01681-w","url":null,"abstract":"Abstract The 20th century eruptions of the Santorini volcano in Greece are the most recent activity of the volcano’s long lifespan. While the different eruptions taking place between 1925 and 1950 have traditionally been considered to exhibit similar eruptive styles, aspects of their evolution and precise information related to the individual eruption dynamics were poorly constrained. This study collates field reports and historical accounts, mainly from the Greek national scientific committee, which was assigned to study the volcanic activity in Nea Kameni Island with recent field campaigns. This analysis provides further insight into these eruptions and attempts to unravel the timing and style of explosive and effusive episodes that took place. Reconstruction of the recent geological evolution and of the eruptive history allow a more complete description of the eruption dynamics and associated unrest. These include fumarolic behaviour, explosion intensity, direction and volume of the lava flows, eruption duration, vent morphological changes (such as craters, domes, and horseshoe ramparts), textural characteristics and lava morphologies, as well as surface fracturing. Specific features related to first-hand accounts of the eruptions and associated products, in conjunction with our in situ post-eruptive geological study, allow an improved reconstruction of activity, both prior to and during the historical eruptions, which contributes to understanding the development of the eruption and enhances the forecast of potential future eruptions from patterns of precursory activity.","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"12 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135774245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeremy Phillips, Shannon Williams, Anthony Lee, Susanna Jenkins
{"title":"Quantifying uncertainty in probabilistic volcanic ash hazard forecasts, with an application to weather pattern based wind field sampling","authors":"Jeremy Phillips, Shannon Williams, Anthony Lee, Susanna Jenkins","doi":"10.1007/s00445-023-01664-x","DOIUrl":"https://doi.org/10.1007/s00445-023-01664-x","url":null,"abstract":"Abstract Probabilistic forecasting of volcanic ash dispersion involves simulating an ensemble of realistic event scenarios to estimate the probability of a particular hazard threshold being exceeded. Although the number of samples that make up the ensemble, how they are chosen, and the desired threshold all set the uncertainty of (or confidence in) the estimated exceedance probability, current practice does not quantify and communicate the uncertainty in ensemble predictions. In this study, we use standard statistical methods to estimate the variance in probabilistic ensembles and use this measure of uncertainty to assess different sampling strategies for the wind field, using the example of volcanic ash transport from a representative explosive eruption in Iceland. For stochastic (random) sampling of the wind field, we show how the variance is reduced with increasing ensemble size and how the variance depends on the desired hazard threshold and the proximity of a target site to the volcanic source. We demonstrate how estimated variances can be used to compare different ensemble designs, by comparing stochastic forecasts with forecasts obtained from a stratified sampling approach using a set of 29 Northern European weather regimes, known as Grosswetterlagen (GWL). Sampling wind fields from within the GWL regimes reduces the number of samples needed to achieve the same variance as compared to conventional stochastic sampling. Our results show that uncertainty in volcanic ash dispersion forecasts can be straightforwardly calculated and communicated, and highlight the need for the volcanic ash forecasting community and operational end-users to jointly choose acceptable levels of variance for ash forecasts in the future.","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"2020 23","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nemi Walding, Rebecca Williams, Pete Rowley, Natasha Dowey
{"title":"Cohesional behaviours in pyroclastic material and the implications for deposit architecture","authors":"Nemi Walding, Rebecca Williams, Pete Rowley, Natasha Dowey","doi":"10.1007/s00445-023-01682-9","DOIUrl":"https://doi.org/10.1007/s00445-023-01682-9","url":null,"abstract":"Abstract Pyroclastic density currents (PDCs) are hazardous, multiphase currents of heterogeneous volcanic material and gas. Moisture (as liquid or gas) can enter a PDC through external (e.g., interaction with bodies of water) or internal (e.g., initial eruptive activity style) processes, and the presence of moisture can be recorded within distinct deposit layers. We use analogue experiments to explore the behaviour of pyroclastic material with increasing addition of moisture from 0.00–10.00% wt. Our results show that (1) the cohesivity of pyroclastic material changes with the addition of small amounts of moisture, (2) small increases in moisture content change the material properties from a free-flowing material to a non-flowable material, (3) changes in moisture can affect the formation of gas escape structures and fluidisation profiles in pyroclastic material, (4) gas flow through a deposit can lead to a moisture profile and resulting mechanical heterogeneity within the deposit and (5) where gas escape structure growth is hindered by cohesivity driven by moisture, pressure can increase and release in an explosive fashion. This work highlights how a suite of varied gas escape morphologies can form within pyroclastic deposits resulting from moisture content heterogeneity, explaining variation in gas escape structures as well as providing a potential mechanism for secondary explosions.","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"37 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manon Pouget, Yves Moussallam, Estelle F. Rose-Koga, Haraldur Sigurdsson
{"title":"A reassessment of the sulfur, chlorine and fluorine atmospheric loading during the 1815 Tambora eruption","authors":"Manon Pouget, Yves Moussallam, Estelle F. Rose-Koga, Haraldur Sigurdsson","doi":"10.1007/s00445-023-01683-8","DOIUrl":"https://doi.org/10.1007/s00445-023-01683-8","url":null,"abstract":"","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"13 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134972579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shallow storage, fragmentation depth, and eruption velocity of the 7.05 Ma Rattlesnake Tuff as indicated by breadcrust bubble ash morphology","authors":"Benjamin J. Andrews, Steve L. Quane","doi":"10.1007/s00445-023-01677-6","DOIUrl":"https://doi.org/10.1007/s00445-023-01677-6","url":null,"abstract":"","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"40 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135218567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}