通过大地测量模型验证和验证,了解火山变形的驱动因素

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Josh Crozier, Leif Karlstrom, Emily Montgomery-Brown, Mario Angarita, Valérie Cayol, Mary Grace Bato, Taiyi A. Wang, Ronni Grapenthin, Tara Shreve, Kyle Anderson, Ana Astort, Olivier Bodart, Flavio Cannavò, Gilda Currenti, Farshid Dabaghi, Brittany A. Erickson, Deepak Garg, Matthew Head, Adriana Iozzia, Young Cheol Kim, Hélène Le Mével, Camila Novoa Lizama, Cody Rucker, Francesca Silverii, Elisa Trasatti, Yan Zhan
{"title":"通过大地测量模型验证和验证,了解火山变形的驱动因素","authors":"Josh Crozier, Leif Karlstrom, Emily Montgomery-Brown, Mario Angarita, Valérie Cayol, Mary Grace Bato, Taiyi A. Wang, Ronni Grapenthin, Tara Shreve, Kyle Anderson, Ana Astort, Olivier Bodart, Flavio Cannavò, Gilda Currenti, Farshid Dabaghi, Brittany A. Erickson, Deepak Garg, Matthew Head, Adriana Iozzia, Young Cheol Kim, Hélène Le Mével, Camila Novoa Lizama, Cody Rucker, Francesca Silverii, Elisa Trasatti, Yan Zhan","doi":"10.1007/s00445-023-01687-4","DOIUrl":null,"url":null,"abstract":"<p>Volcano geodesy often involves the use of models to explain observed surface deformation. A variety of forward models are used, from analytical point sources to numerical simulations that consider complex magma system geometries, topography, and material properties. Various inversion methods can then be used to relate observed volcano data to models. Ideally, forward models should be verified through intercomparison, to check for implementation errors and quantify the error induced by any approximations used. Additionally, forward models and inversion methods should be validated through tests with synthetic and/or real data, to determine their ability to match data and estimate parameter values within uncertainty. However, to date, there have not been comprehensive verification and validation efforts in volcano geodesy. Here, we report on the first phase of the Drivers of Volcano Deformation (DVD) exercises, which were designed to build community involvement through web-based exercises involving calculations of static elastic displacement around pressurized magma reservoirs. The forward model exercises begin with a spherical reservoir in a homogeneous half space, then introduce topography, heterogeneous elastic properties, and spheroidal geometries. The inversion exercises provide synthetic noisy surface displacement data for a spherical reservoir in a homogeneous half space and assess consistency in estimates of reservoir location and volume/pressure change. There is variability in the results from both forward modeling and inversions, which highlights the strengths and limitations of different forward models, as well as the importance of inversion method choice and uncertainty quantification. This first phase of the DVD exercises serves as a community resource and will facilitate further efforts to develop standards of reproducibility.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"365 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the drivers of volcano deformation through geodetic model verification and validation\",\"authors\":\"Josh Crozier, Leif Karlstrom, Emily Montgomery-Brown, Mario Angarita, Valérie Cayol, Mary Grace Bato, Taiyi A. Wang, Ronni Grapenthin, Tara Shreve, Kyle Anderson, Ana Astort, Olivier Bodart, Flavio Cannavò, Gilda Currenti, Farshid Dabaghi, Brittany A. Erickson, Deepak Garg, Matthew Head, Adriana Iozzia, Young Cheol Kim, Hélène Le Mével, Camila Novoa Lizama, Cody Rucker, Francesca Silverii, Elisa Trasatti, Yan Zhan\",\"doi\":\"10.1007/s00445-023-01687-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Volcano geodesy often involves the use of models to explain observed surface deformation. A variety of forward models are used, from analytical point sources to numerical simulations that consider complex magma system geometries, topography, and material properties. Various inversion methods can then be used to relate observed volcano data to models. Ideally, forward models should be verified through intercomparison, to check for implementation errors and quantify the error induced by any approximations used. Additionally, forward models and inversion methods should be validated through tests with synthetic and/or real data, to determine their ability to match data and estimate parameter values within uncertainty. However, to date, there have not been comprehensive verification and validation efforts in volcano geodesy. Here, we report on the first phase of the Drivers of Volcano Deformation (DVD) exercises, which were designed to build community involvement through web-based exercises involving calculations of static elastic displacement around pressurized magma reservoirs. The forward model exercises begin with a spherical reservoir in a homogeneous half space, then introduce topography, heterogeneous elastic properties, and spheroidal geometries. The inversion exercises provide synthetic noisy surface displacement data for a spherical reservoir in a homogeneous half space and assess consistency in estimates of reservoir location and volume/pressure change. There is variability in the results from both forward modeling and inversions, which highlights the strengths and limitations of different forward models, as well as the importance of inversion method choice and uncertainty quantification. This first phase of the DVD exercises serves as a community resource and will facilitate further efforts to develop standards of reproducibility.</p>\",\"PeriodicalId\":55297,\"journal\":{\"name\":\"Bulletin of Volcanology\",\"volume\":\"365 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Volcanology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00445-023-01687-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-023-01687-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

火山大地测量学通常涉及使用模型来解释观测到的地表变形。使用了各种正演模型,从解析点源到考虑复杂岩浆系统几何形状、地形和材料性质的数值模拟。然后可以使用各种反演方法将观测到的火山数据与模型相关联。理想情况下,应该通过相互比较来验证正演模型,以检查实现错误并量化所使用的任何近似引起的误差。此外,正演模型和反演方法应通过合成和/或真实数据的测试来验证,以确定它们在不确定性范围内匹配数据和估计参数值的能力。然而,迄今为止,在火山大地测量学方面还没有进行全面的验证和验证工作。在这里,我们报告了火山变形驱动(DVD)演习的第一阶段,该演习旨在通过基于网络的演习建立社区参与,包括计算加压岩浆储层周围的静态弹性位移。正演模型练习从均匀半空间中的球形储层开始,然后引入地形,非均质弹性性质和球体几何形状。反演练习为均匀半空间的球形油藏提供了合成的有噪声地表位移数据,并评估了油藏位置和体积/压力变化估计的一致性。正演模型和反演结果都存在差异,这凸显了不同正演模型的优势和局限性,以及反演方法选择和不确定性量化的重要性。第一阶段的DVD练习可作为社区资源,并将促进进一步努力制定再现性标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding the drivers of volcano deformation through geodetic model verification and validation

Understanding the drivers of volcano deformation through geodetic model verification and validation

Volcano geodesy often involves the use of models to explain observed surface deformation. A variety of forward models are used, from analytical point sources to numerical simulations that consider complex magma system geometries, topography, and material properties. Various inversion methods can then be used to relate observed volcano data to models. Ideally, forward models should be verified through intercomparison, to check for implementation errors and quantify the error induced by any approximations used. Additionally, forward models and inversion methods should be validated through tests with synthetic and/or real data, to determine their ability to match data and estimate parameter values within uncertainty. However, to date, there have not been comprehensive verification and validation efforts in volcano geodesy. Here, we report on the first phase of the Drivers of Volcano Deformation (DVD) exercises, which were designed to build community involvement through web-based exercises involving calculations of static elastic displacement around pressurized magma reservoirs. The forward model exercises begin with a spherical reservoir in a homogeneous half space, then introduce topography, heterogeneous elastic properties, and spheroidal geometries. The inversion exercises provide synthetic noisy surface displacement data for a spherical reservoir in a homogeneous half space and assess consistency in estimates of reservoir location and volume/pressure change. There is variability in the results from both forward modeling and inversions, which highlights the strengths and limitations of different forward models, as well as the importance of inversion method choice and uncertainty quantification. This first phase of the DVD exercises serves as a community resource and will facilitate further efforts to develop standards of reproducibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Volcanology
Bulletin of Volcanology 地学-地球科学综合
CiteScore
6.40
自引率
20.00%
发文量
89
审稿时长
4-8 weeks
期刊介绍: Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信