Damià Benet, Fidel Costa, Christina Widiwijayanti, John Pallister, Gabriela Pedreros, Patrick Allard, Hanik Humaida, Yosuke Aoki, Fukashi Maeno
{"title":"VolcAshDB:包含分类颗粒图像和特征的火山灰数据库","authors":"Damià Benet, Fidel Costa, Christina Widiwijayanti, John Pallister, Gabriela Pedreros, Patrick Allard, Hanik Humaida, Yosuke Aoki, Fukashi Maeno","doi":"10.1007/s00445-023-01695-4","DOIUrl":null,"url":null,"abstract":"<p>Volcanic ash provides unique pieces of information that can help to understand the progress of volcanic activity at the early stages of unrest, and possible transitions towards different eruptive styles. Ash contains different types of particles that are indicative of eruptive styles and magma ascent processes. However, classifying ash particles into its main components is not straightforward. Diagnostic observations vary depending on the magma composition and the style of eruption, which leads to ambiguities in assigning a given particle to a given class. Moreover, there is no standardized methodology for particle classification, and thus different observers may infer different interpretations. To improve this situation, we created the web-based platform Volcanic Ash DataBase (VolcAshDB). The database contains > 6,300 multi-focused high-resolution images of ash particles as seen under the binocular microscope from a wide range of magma compositions and types of volcanic activity. For each particle image, we quantitatively extracted 33 features of shape, texture, and color, and petrographically classified each particle into one of the four main categories: free crystal, altered material, lithic, and juvenile. VolcAshDB (https://volcash.wovodat.org) is publicly available and enables users to browse, obtain visual summaries, and download the images with their corresponding labels. The classified images could be used for comparative studies and to train Machine Learning models to automatically classify particles and minimize observer biases.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"12 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VolcAshDB: a Volcanic Ash DataBase of classified particle images and features\",\"authors\":\"Damià Benet, Fidel Costa, Christina Widiwijayanti, John Pallister, Gabriela Pedreros, Patrick Allard, Hanik Humaida, Yosuke Aoki, Fukashi Maeno\",\"doi\":\"10.1007/s00445-023-01695-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Volcanic ash provides unique pieces of information that can help to understand the progress of volcanic activity at the early stages of unrest, and possible transitions towards different eruptive styles. Ash contains different types of particles that are indicative of eruptive styles and magma ascent processes. However, classifying ash particles into its main components is not straightforward. Diagnostic observations vary depending on the magma composition and the style of eruption, which leads to ambiguities in assigning a given particle to a given class. Moreover, there is no standardized methodology for particle classification, and thus different observers may infer different interpretations. To improve this situation, we created the web-based platform Volcanic Ash DataBase (VolcAshDB). The database contains > 6,300 multi-focused high-resolution images of ash particles as seen under the binocular microscope from a wide range of magma compositions and types of volcanic activity. For each particle image, we quantitatively extracted 33 features of shape, texture, and color, and petrographically classified each particle into one of the four main categories: free crystal, altered material, lithic, and juvenile. VolcAshDB (https://volcash.wovodat.org) is publicly available and enables users to browse, obtain visual summaries, and download the images with their corresponding labels. The classified images could be used for comparative studies and to train Machine Learning models to automatically classify particles and minimize observer biases.</p>\",\"PeriodicalId\":55297,\"journal\":{\"name\":\"Bulletin of Volcanology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Volcanology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00445-023-01695-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-023-01695-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
VolcAshDB: a Volcanic Ash DataBase of classified particle images and features
Volcanic ash provides unique pieces of information that can help to understand the progress of volcanic activity at the early stages of unrest, and possible transitions towards different eruptive styles. Ash contains different types of particles that are indicative of eruptive styles and magma ascent processes. However, classifying ash particles into its main components is not straightforward. Diagnostic observations vary depending on the magma composition and the style of eruption, which leads to ambiguities in assigning a given particle to a given class. Moreover, there is no standardized methodology for particle classification, and thus different observers may infer different interpretations. To improve this situation, we created the web-based platform Volcanic Ash DataBase (VolcAshDB). The database contains > 6,300 multi-focused high-resolution images of ash particles as seen under the binocular microscope from a wide range of magma compositions and types of volcanic activity. For each particle image, we quantitatively extracted 33 features of shape, texture, and color, and petrographically classified each particle into one of the four main categories: free crystal, altered material, lithic, and juvenile. VolcAshDB (https://volcash.wovodat.org) is publicly available and enables users to browse, obtain visual summaries, and download the images with their corresponding labels. The classified images could be used for comparative studies and to train Machine Learning models to automatically classify particles and minimize observer biases.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.