Compositio Mathematica最新文献

筛选
英文 中文
Zeros of Rankin–Selberg L-functions in families 兰金-塞尔伯格 L 函数族中的零点
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-04-03 DOI: 10.1112/s0010437x24007085
Peter Humphries, Jesse Thorner
{"title":"Zeros of Rankin–Selberg L-functions in families","authors":"Peter Humphries, Jesse Thorner","doi":"10.1112/s0010437x24007085","DOIUrl":"https://doi.org/10.1112/s0010437x24007085","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathfrak {F}_n$</span></span></img></span></span> be the set of all cuspidal automorphic representations <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathrm {GL}_n$</span></span></img></span></span> with unitary central character over a number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>. We prove the first unconditional zero density estimate for the set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal {S}={L(s,pi times pi ')colon pi in mathfrak {F}_n}$</span></span></img></span></span> of Rankin–Selberg <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$L$</span></span></img></span></span>-functions, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$pi 'in mathfrak {F}_{n'}$</span></span></img></span></span> is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$s=frac {1}{2}$</span></span></img></span></span> for almost all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$L(s,pi times pi ')in mathcal {S}$</span></","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"40 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fields of moduli and the arithmetic of tame quotient singularities 模域和驯商奇点算术
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-27 DOI: 10.1112/s0010437x2400705x
Giulio Bresciani, Angelo Vistoli
{"title":"Fields of moduli and the arithmetic of tame quotient singularities","authors":"Giulio Bresciani, Angelo Vistoli","doi":"10.1112/s0010437x2400705x","DOIUrl":"https://doi.org/10.1112/s0010437x2400705x","url":null,"abstract":"<p>Given a perfect field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> with algebraic closure <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$overline {k}$</span></span></img></span></span> and a variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$overline {k}$</span></span></img></span></span>, the field of moduli of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> is the subfield of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$overline {k}$</span></span></img></span></span> of elements fixed by field automorphisms <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$gamma in operatorname {Gal}(overline {k}/k)$</span></span></img></span></span> such that the Galois conjugate <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$X_{gamma }$</span></span></img></span></span> is isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span>. The field of moduli is contained in all subextensions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambri","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"158 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular curves and Néron models of generalized Jacobians 广义雅各布的模块曲线和内龙模型
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-26 DOI: 10.1112/s0010437x23007662
Bruce W. Jordan, Kenneth A. Ribet, Anthony J. Scholl
{"title":"Modular curves and Néron models of generalized Jacobians","authors":"Bruce W. Jordan, Kenneth A. Ribet, Anthony J. Scholl","doi":"10.1112/s0010437x23007662","DOIUrl":"https://doi.org/10.1112/s0010437x23007662","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$R$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathfrak {m}$</span></span></img></span></span> a modulus on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span>, given by a closed subscheme of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> which is geometrically reduced. The generalized Jacobian <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$J_mathfrak {m}$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> with respect to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$mathfrak {m}$</span></span></img></span></span> is then an extension of the Jacobian of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> by a torus. We describe its Néron model, together with the character and component groups of the special fibre, in terms of a regular m","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"75 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The analytic classification of plane curves 平面曲线的解析分类
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-19 DOI: 10.1112/s0010437x24007061
Marcelo Escudeiro Hernandes, Maria Elenice Rodrigues Hernandes
{"title":"The analytic classification of plane curves","authors":"Marcelo Escudeiro Hernandes, Maria Elenice Rodrigues Hernandes","doi":"10.1112/s0010437x24007061","DOIUrl":"https://doi.org/10.1112/s0010437x24007061","url":null,"abstract":"<p>In this paper, we present a solution to the problem of the analytic classification of germs of plane curves with several irreducible components. Our algebraic approach follows precursive ideas of Oscar Zariski and as a subproduct allows us to recover some particular cases found in the literature.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"19 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140170758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrepancy of rational points in simple algebraic groups 简单代数群中有理点的差异
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-13 DOI: 10.1112/s0010437x23007716
Alexander Gorodnik, Amos Nevo
{"title":"Discrepancy of rational points in simple algebraic groups","authors":"Alexander Gorodnik, Amos Nevo","doi":"10.1112/s0010437x23007716","DOIUrl":"https://doi.org/10.1112/s0010437x23007716","url":null,"abstract":"<p>The aim of the present paper is to derive effective discrepancy estimates for the distribution of rational points on general semisimple algebraic group varieties, in general families of subsets and at arbitrarily small scales. We establish mean-square, almost sure and uniform estimates for the discrepancy with explicit error bounds. We also prove an analogue of W. Schmidt's theorem, which establishes effective almost sure asymptotic counting of rational solutions to Diophantine inequalities in the Euclidean space. We formulate and prove a version of it for rational points on the group variety, with an effective bound which in some instances can be expected to be the best possible.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"116 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140115646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convexity of multiplicities of filtrations on local rings 局部环上滤数乘数的凸性
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-13 DOI: 10.1112/s0010437x23007972
Harold Blum, Yuchen Liu, Lu Qi
{"title":"Convexity of multiplicities of filtrations on local rings","authors":"Harold Blum, Yuchen Liu, Lu Qi","doi":"10.1112/s0010437x23007972","DOIUrl":"https://doi.org/10.1112/s0010437x23007972","url":null,"abstract":"<p>We prove that the multiplicity of a filtration of a local ring satisfies various convexity properties. In particular, we show the multiplicity is convex along geodesics. As a consequence, we prove that the volume of a valuation is log convex on simplices of quasi-monomial valuations and give a new proof of a theorem of Xu and Zhuang on the uniqueness of normalized volume minimizers. In another direction, we generalize a theorem of Rees on multiplicities of ideals to filtrations and characterize when the Minkowski inequality for filtrations is an equality under mild assumptions.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"27 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing abelian varieties from rank 2 Galois representations 从秩 2 伽罗瓦表示构建无常变体
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-07 DOI: 10.1112/s0010437x23007728
Raju Krishnamoorthy, Jinbang Yang, Kang Zuo
{"title":"Constructing abelian varieties from rank 2 Galois representations","authors":"Raju Krishnamoorthy, Jinbang Yang, Kang Zuo","doi":"10.1112/s0010437x23007728","DOIUrl":"https://doi.org/10.1112/s0010437x23007728","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$U$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; be a smooth affine curve over a number field &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$K$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; with a compactification &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$X$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; and let &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;${mathbb {L}}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; be a rank &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, geometrically irreducible lisse &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$overline {{mathbb {Q}}}_ell$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-sheaf on &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$U$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; with cyclotomic determinant that extends to an integral model, has Frobenius traces all in some fixed number field &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$Esubset overline {mathbb {Q}}_{ell }$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, and has bad, infinite reduction at some closed point &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline9.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$x$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"2676 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
There are at most finitely many singular moduli that are S-units 最多有有限个奇异模数是 S 单位
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-05 DOI: 10.1112/s0010437x23007704
Sebastián Herrero, Ricardo Menares, Juan Rivera-Letelier
{"title":"There are at most finitely many singular moduli that are S-units","authors":"Sebastián Herrero, Ricardo Menares, Juan Rivera-Letelier","doi":"10.1112/s0010437x23007704","DOIUrl":"https://doi.org/10.1112/s0010437x23007704","url":null,"abstract":"<p>We show that for every finite set of prime numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>, there are at most finitely many singular moduli that are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>-units. The key new ingredient is that for every prime number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>, singular moduli are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-adically disperse. We prove analogous results for the Weber modular functions, the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$lambda$</span></span></img></span></span>-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"156 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Hasse principle for complete intersections 关于完全交叉点的哈塞原理
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-03-05 DOI: 10.1112/s0010437x23007698
Matthew Northey, Pankaj Vishe
{"title":"On the Hasse principle for complete intersections","authors":"Matthew Northey, Pankaj Vishe","doi":"10.1112/s0010437x23007698","DOIUrl":"https://doi.org/10.1112/s0010437x23007698","url":null,"abstract":"<p>We prove the Hasse principle for a smooth projective variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304180407639-0000:S0010437X23007698:S0010437X23007698_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$Xsubset mathbb {P}^{n-1}_mathbb {Q}$</span></span></img></span></span> defined by a system of two cubic forms <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304180407639-0000:S0010437X23007698:S0010437X23007698_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$F,G$</span></span></img></span></span> as long as <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304180407639-0000:S0010437X23007698:S0010437X23007698_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$ngeq 39$</span></span></img></span></span>. The main tool here is the development of a version of Kloosterman refinement for a smooth system of equations defined over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304180407639-0000:S0010437X23007698:S0010437X23007698_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {Q}$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"28 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On straightening for Segal spaces 关于塞加尔空间的矫直
IF 1.8 1区 数学
Compositio Mathematica Pub Date : 2024-02-23 DOI: 10.1112/s0010437x23007674
Joost Nuiten
{"title":"On straightening for Segal spaces","authors":"Joost Nuiten","doi":"10.1112/s0010437x23007674","DOIUrl":"https://doi.org/10.1112/s0010437x23007674","url":null,"abstract":"<p>The straightening–unstraightening correspondence of Grothendieck–Lurie provides an equivalence between cocartesian fibrations between <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240222174850284-0238:S0010437X23007674:S0010437X23007674_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(infty, 1)$</span></span></img></span></span>-categories and diagrams of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240222174850284-0238:S0010437X23007674:S0010437X23007674_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(infty, 1)$</span></span></img></span></span>-categories. We provide an alternative proof of this correspondence, as well as an extension of straightening–unstraightening to all higher categorical dimensions. This is based on an explicit combinatorial result relating two types of fibrations between double categories, which can be applied inductively to construct the straightening of a cocartesian fibration between higher categories.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"276 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信