兰金-塞尔伯格 L 函数族中的零点

IF 1.3 1区 数学 Q1 MATHEMATICS
Peter Humphries, Jesse Thorner
{"title":"兰金-塞尔伯格 L 函数族中的零点","authors":"Peter Humphries, Jesse Thorner","doi":"10.1112/s0010437x24007085","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {F}_n$</span></span></img></span></span> be the set of all cuspidal automorphic representations <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {GL}_n$</span></span></img></span></span> with unitary central character over a number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>. We prove the first unconditional zero density estimate for the set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}=\\{L(s,\\pi \\times \\pi ')\\colon \\pi \\in \\mathfrak {F}_n\\}$</span></span></img></span></span> of Rankin–Selberg <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$L$</span></span></img></span></span>-functions, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi '\\in \\mathfrak {F}_{n'}$</span></span></img></span></span> is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$s=\\frac {1}{2}$</span></span></img></span></span> for almost all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$L(s,\\pi \\times \\pi ')\\in \\mathcal {S}$</span></span></img></span></span>; (ii) a strong on-average form of effective multiplicity one for almost all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi \\in \\mathfrak {F}_n$</span></span></img></span></span>; and (iii) a positive level of distribution for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$L(s,\\pi \\times \\widetilde {\\pi })$</span></span></img></span></span>, in the sense of Bombieri–Vinogradov, for each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi \\in \\mathfrak {F}_n$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"40 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeros of Rankin–Selberg L-functions in families\",\"authors\":\"Peter Humphries, Jesse Thorner\",\"doi\":\"10.1112/s0010437x24007085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathfrak {F}_n$</span></span></img></span></span> be the set of all cuspidal automorphic representations <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi$</span></span></img></span></span> of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {GL}_n$</span></span></img></span></span> with unitary central character over a number field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$F$</span></span></img></span></span>. We prove the first unconditional zero density estimate for the set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {S}=\\\\{L(s,\\\\pi \\\\times \\\\pi ')\\\\colon \\\\pi \\\\in \\\\mathfrak {F}_n\\\\}$</span></span></img></span></span> of Rankin–Selberg <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L$</span></span></img></span></span>-functions, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi '\\\\in \\\\mathfrak {F}_{n'}$</span></span></img></span></span> is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s=\\\\frac {1}{2}$</span></span></img></span></span> for almost all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L(s,\\\\pi \\\\times \\\\pi ')\\\\in \\\\mathcal {S}$</span></span></img></span></span>; (ii) a strong on-average form of effective multiplicity one for almost all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi \\\\in \\\\mathfrak {F}_n$</span></span></img></span></span>; and (iii) a positive level of distribution for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L(s,\\\\pi \\\\times \\\\widetilde {\\\\pi })$</span></span></img></span></span>, in the sense of Bombieri–Vinogradov, for each <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240402192832797-0216:S0010437X24007085:S0010437X24007085_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi \\\\in \\\\mathfrak {F}_n$</span></span></img></span></span>.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007085\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007085","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathfrak {F}_n$ 是 $\mathrm {GL}_n$ 在数域 $F$ 上具有单元中心符的所有尖顶自形表示 $\pi$ 的集合。我们证明了兰金-塞尔伯格 $L$ 函数集合 $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ 的第一个无条件零密度估计,其中 $\pi '\in \mathfrak {F}_{n'}$ 是固定的。我们利用这个密度估计来建立(i) 对于几乎所有的 $L(s,\pi \times \pi ')\in \mathcal {S}$ 来说,在 $s=\frac {1}{2}$ 处都有一个混杂面次凸性约束;(ii) 对于几乎所有的 $\pi \in \mathfrak {F}_n$ 来说,都有一个强平均形式的有效乘数一;(iii) 对于每个 $pi \ in \mathfrak {F}_n$ 而言,在 Bombieri-Vinogradov 的意义上,$L(s,\pi \times \widetilde {\pi })$ 的分布水平为正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeros of Rankin–Selberg L-functions in families

Let $\mathfrak {F}_n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm {GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg $L$-functions, where $\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at $s=\frac {1}{2}$ for almost all $L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all $\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for $L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each $\pi \in \mathfrak {F}_n$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信