There are at most finitely many singular moduli that are S-units

IF 1.3 1区 数学 Q1 MATHEMATICS
Sebastián Herrero, Ricardo Menares, Juan Rivera-Letelier
{"title":"There are at most finitely many singular moduli that are S-units","authors":"Sebastián Herrero, Ricardo Menares, Juan Rivera-Letelier","doi":"10.1112/s0010437x23007704","DOIUrl":null,"url":null,"abstract":"<p>We show that for every finite set of prime numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>, there are at most finitely many singular moduli that are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>-units. The key new ingredient is that for every prime number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>, singular moduli are <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-adically disperse. We prove analogous results for the Weber modular functions, the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304200415819-0744:S0010437X23007704:S0010437X23007704_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda$</span></span></img></span></span>-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"156 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007704","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that for every finite set of prime numbers Abstract Image$S$, there are at most finitely many singular moduli that are Abstract Image$S$-units. The key new ingredient is that for every prime number Abstract Image$p$, singular moduli are Abstract Image$p$-adically disperse. We prove analogous results for the Weber modular functions, the Abstract Image$\lambda$-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.

最多有有限个奇异模数是 S 单位
我们证明,对于每个有限的素数集$S$,最多有有限个奇异模数是$S$单位。关键的新要素是,对于每个素数 $p$,奇异模数都是 $p$-adically 分散的。我们证明了韦伯模函数、$\lambda$不变式和与怪兽群元素相关的麦凯-汤普森级数的类似结果。最后,我们还得到了在二次虚数处特化为无限多代数单元的模态函数一定是弱模态单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信