Modular curves and Néron models of generalized Jacobians

IF 1.3 1区 数学 Q1 MATHEMATICS
Bruce W. Jordan, Kenneth A. Ribet, Anthony J. Scholl
{"title":"Modular curves and Néron models of generalized Jacobians","authors":"Bruce W. Jordan, Kenneth A. Ribet, Anthony J. Scholl","doi":"10.1112/s0010437x23007662","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$R$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {m}$</span></span></img></span></span> a modulus on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span>, given by a closed subscheme of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> which is geometrically reduced. The generalized Jacobian <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$J_\\mathfrak {m}$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> with respect to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {m}$</span></span></img></span></span> is then an extension of the Jacobian of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> by a torus. We describe its Néron model, together with the character and component groups of the special fibre, in terms of a regular model of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$R$</span></span></img></span></span>. This generalizes Raynaud's well-known description for the usual Jacobian. We also give some computations for generalized Jacobians of modular curves <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240325174228573-0602:S0010437X23007662:S0010437X23007662_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$X_0(N)$</span></span></img></span></span> with moduli supported on the cusps.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"75 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007662","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image$X$ be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring Abstract Image$R$, and Abstract Image$\mathfrak {m}$ a modulus on Abstract Image$X$, given by a closed subscheme of Abstract Image$X$ which is geometrically reduced. The generalized Jacobian Abstract Image$J_\mathfrak {m}$ of Abstract Image$X$ with respect to Abstract Image$\mathfrak {m}$ is then an extension of the Jacobian of Abstract Image$X$ by a torus. We describe its Néron model, together with the character and component groups of the special fibre, in terms of a regular model of Abstract Image$X$ over Abstract Image$R$. This generalizes Raynaud's well-known description for the usual Jacobian. We also give some computations for generalized Jacobians of modular curves Abstract Image$X_0(N)$ with moduli supported on the cusps.

广义雅各布的模块曲线和内龙模型
假设 $X$ 是离散估值环 $R$ 分数域上的一条几何上光滑相连的投影曲线,而 $\mathfrak {m}$ 是 $X$ 上的一个模,由几何上缩小的 $X$ 的一个封闭子cheme 给出。那么,与 $\mathfrak {m}$ 有关的 $X$ 的广义雅各比值 $J_\mathfrak {m}$ 就是由环状体对 $X$ 的雅各比值的扩展。我们用 $R$ 上的 $X$ 正则模型来描述它的内龙模型以及特殊纤维的特征群和成分群。这概括了雷诺对通常雅各布的著名描述。我们还给出了一些关于模数支持在尖顶上的模数曲线 $X_0(N)$ 的广义雅各比的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信