从秩 2 伽罗瓦表示构建无常变体

IF 1.3 1区 数学 Q1 MATHEMATICS
Raju Krishnamoorthy, Jinbang Yang, Kang Zuo
{"title":"从秩 2 伽罗瓦表示构建无常变体","authors":"Raju Krishnamoorthy, Jinbang Yang, Kang Zuo","doi":"10.1112/s0010437x23007728","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$U$</span></span></img></span></span> be a smooth affine curve over a number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K$</span></span></img></span></span> with a compactification <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {L}}$</span></span></img></span></span> be a rank <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>, geometrically irreducible lisse <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {{\\mathbb {Q}}}_\\ell$</span></span></img></span></span>-sheaf on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$U$</span></span></img></span></span> with cyclotomic determinant that extends to an integral model, has Frobenius traces all in some fixed number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$E\\subset \\overline {\\mathbb {Q}}_{\\ell }$</span></span></img></span></span>, and has bad, infinite reduction at some closed point <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$x$</span></span></img></span></span> of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$X\\setminus U$</span></span></img></span></span>. We show that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline11.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {L}}$</span></span></img></span></span> occurs as a summand of the cohomology of a family of abelian varieties over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$U$</span></span></img></span></span>. The argument follows the structure of the proof of a recent theorem of Snowden and Tsimerman, who show that when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$E=\\mathbb {Q}$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline14.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {L}}$</span></span></img></span></span> is isomorphic to the cohomology of an elliptic curve <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$E_U\\rightarrow U$</span></span></img></span></span>.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"2676 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing abelian varieties from rank 2 Galois representations\",\"authors\":\"Raju Krishnamoorthy, Jinbang Yang, Kang Zuo\",\"doi\":\"10.1112/s0010437x23007728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$U$</span></span></img></span></span> be a smooth affine curve over a number field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K$</span></span></img></span></span> with a compactification <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X$</span></span></img></span></span> and let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {L}}$</span></span></img></span></span> be a rank <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>, geometrically irreducible lisse <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {{\\\\mathbb {Q}}}_\\\\ell$</span></span></img></span></span>-sheaf on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$U$</span></span></img></span></span> with cyclotomic determinant that extends to an integral model, has Frobenius traces all in some fixed number field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E\\\\subset \\\\overline {\\\\mathbb {Q}}_{\\\\ell }$</span></span></img></span></span>, and has bad, infinite reduction at some closed point <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x$</span></span></img></span></span> of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X\\\\setminus U$</span></span></img></span></span>. We show that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {L}}$</span></span></img></span></span> occurs as a summand of the cohomology of a family of abelian varieties over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$U$</span></span></img></span></span>. The argument follows the structure of the proof of a recent theorem of Snowden and Tsimerman, who show that when <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E=\\\\mathbb {Q}$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {L}}$</span></span></img></span></span> is isomorphic to the cohomology of an elliptic curve <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240307072459819-0092:S0010437X23007728:S0010437X23007728_inline15.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_U\\\\rightarrow U$</span></span></img></span></span>.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"2676 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007728\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x23007728","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $U$ 是一条在数域 $K$ 上的光滑仿射曲线,其紧凑性为 $X$;让 ${mathbb {L}}$ 是一个在 $U$ 上的秩为 2$、几何上不可还原的 lisse $/overline {{\mathbb {Q}}_\ell$ 舍夫,其环状行列式扩展为一个积分模型、在某个固定数域 $E\subset \overline {\mathbb {Q}}_{\ell }$中都有弗罗贝尼斯迹,并且在 $X\setminus U$ 的某个闭点 $x$ 上有坏的、无限的还原。我们证明 ${mathbb {L}}$ 是作为 U$ 上的无性变体族的同调之和出现的。斯诺登和齐默尔曼的论证沿用了他们最近证明的一个定理的结构,即当 $E=\mathbb {Q}$ 时,${/mathbb {L}}$ 与椭圆曲线 $E_U\rightarrow U$ 的同调同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing abelian varieties from rank 2 Galois representations

Let $U$ be a smooth affine curve over a number field $K$ with a compactification $X$ and let ${\mathbb {L}}$ be a rank $2$, geometrically irreducible lisse $\overline {{\mathbb {Q}}}_\ell$-sheaf on $U$ with cyclotomic determinant that extends to an integral model, has Frobenius traces all in some fixed number field $E\subset \overline {\mathbb {Q}}_{\ell }$, and has bad, infinite reduction at some closed point $x$ of $X\setminus U$. We show that ${\mathbb {L}}$ occurs as a summand of the cohomology of a family of abelian varieties over $U$. The argument follows the structure of the proof of a recent theorem of Snowden and Tsimerman, who show that when $E=\mathbb {Q}$, then ${\mathbb {L}}$ is isomorphic to the cohomology of an elliptic curve $E_U\rightarrow U$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信