Fields of moduli and the arithmetic of tame quotient singularities

IF 1.3 1区 数学 Q1 MATHEMATICS
Giulio Bresciani, Angelo Vistoli
{"title":"Fields of moduli and the arithmetic of tame quotient singularities","authors":"Giulio Bresciani, Angelo Vistoli","doi":"10.1112/s0010437x2400705x","DOIUrl":null,"url":null,"abstract":"<p>Given a perfect field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> with algebraic closure <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {k}$</span></span></img></span></span> and a variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {k}$</span></span></img></span></span>, the field of moduli of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> is the subfield of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {k}$</span></span></img></span></span> of elements fixed by field automorphisms <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma \\in \\operatorname {Gal}(\\overline {k}/k)$</span></span></img></span></span> such that the Galois conjugate <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$X_{\\gamma }$</span></span></img></span></span> is isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span>. The field of moduli is contained in all subextensions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$k\\subset k'\\subset \\overline {k}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> descends to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$k'$</span></span></img></span></span>. In this paper, we extend the formalism and define the field of moduli when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> is not perfect. Furthermore, Dèbes and Emsalem identified a condition that ensures that a smooth curve is defined over its field of moduli, and prove that a smooth curve with a marked point is always defined over its field of moduli. Our main theorem is a generalization of these results that applies to higher-dimensional varieties, and to varieties with additional structures. In order to apply this, we study the problem of when a rational point of a variety with quotient singularities lifts to a resolution. As a consequence, we prove that a variety <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$X$</span></span></img></span></span> of dimension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$d$</span></span></img></span></span> with a smooth marked point <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline17.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {Aut}(X,p)$</span></span></img></span></span> is finite, étale and of degree prime to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240326174202036-0722:S0010437X2400705X:S0010437X2400705X_inline18.png\"/><span data-mathjax-type=\"texmath\"><span>$d!$</span></span></span></span> is defined over its field of moduli.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"158 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x2400705x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a perfect field Abstract Image$k$ with algebraic closure Abstract Image$\overline {k}$ and a variety Abstract Image$X$ over Abstract Image$\overline {k}$, the field of moduli of Abstract Image$X$ is the subfield of Abstract Image$\overline {k}$ of elements fixed by field automorphisms Abstract Image$\gamma \in \operatorname {Gal}(\overline {k}/k)$ such that the Galois conjugate Abstract Image$X_{\gamma }$ is isomorphic to Abstract Image$X$. The field of moduli is contained in all subextensions Abstract Image$k\subset k'\subset \overline {k}$ such that Abstract Image$X$ descends to Abstract Image$k'$. In this paper, we extend the formalism and define the field of moduli when Abstract Image$k$ is not perfect. Furthermore, Dèbes and Emsalem identified a condition that ensures that a smooth curve is defined over its field of moduli, and prove that a smooth curve with a marked point is always defined over its field of moduli. Our main theorem is a generalization of these results that applies to higher-dimensional varieties, and to varieties with additional structures. In order to apply this, we study the problem of when a rational point of a variety with quotient singularities lifts to a resolution. As a consequence, we prove that a variety Abstract Image$X$ of dimension Abstract Image$d$ with a smooth marked point Abstract Image$p$ such that Abstract Image$\operatorname {Aut}(X,p)$ is finite, étale and of degree prime to Abstract Image$d!$ is defined over its field of moduli.

模域和驯商奇点算术
给定一个具有代数闭合$overline {k}$的完全域$k$和一个在$overline {k}$上的综元$X$,$X$的模域就是由域自变量$\gamma \in \operatorname {Gal}(\overline {k}/k)$ 固定元素的$overline {k}$子域,使得伽罗瓦共轭$X_{\gamma }$与$X$同构。模域包含在所有子扩展中 $k(子集 k')\(子集 \overline {k})$,使得 $X$ 下降到 $k'$。在本文中,我们扩展了形式主义,并定义了当 $k$ 不完美时的模域。此外,Dèbes 和 Emsalem 确定了确保光滑曲线定义在其模域上的条件,并证明了有标记点的光滑曲线总是定义在其模域上。我们的主要定理是对这些结果的推广,适用于高维变种和具有附加结构的变种。为了应用这个定理,我们研究了具有商奇点的有理点何时升为解析的问题。因此,我们证明了维数为$d$的具有光滑标记点$p$的综$X$,其模域上的$operatorname {Aut}(X,p)$是有限的、椭圆的、度为$d!$的素数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信