Yang Liu , Peichen Wu , Penglin Li , Jian-Hua Yin , Jun-Jie Zheng
{"title":"Fully coupled large-strain radial consolidation analysis for dredged marine slurry treated by prefabricated vertical drain with vacuum and heat preloading","authors":"Yang Liu , Peichen Wu , Penglin Li , Jian-Hua Yin , Jun-Jie Zheng","doi":"10.1016/j.compgeo.2024.106852","DOIUrl":"10.1016/j.compgeo.2024.106852","url":null,"abstract":"<div><div>The use of prefabricated vertical drain (PVD) in conjunction with vacuum and heat preloading is an effective improvement approach for dredged marine slurry. Despite it being a typical large-strain thermal-hydro-mechanical (THM) problem, there is currently a lack of reliable large-strain analysis methods for this problem. This study therefore develops a large-strain radial consolidation model, considering a thermal elastoplastic constitutive model of soft clays, self-weight of dredged slurry, radial and vertical flows, nonlinear hydraulic conductivity, nonlinear compressibility during the consolidation process, heat conduction, and heat convection process. The modified alternative direction implicit (ADI) difference approach is used to solve the proposed model. The numerical algorithm is then verified by degraded verification with a well-established radial-large strain consolidation model. A laboratory experiment has been employed to show the effectiveness of the proposed model in predicting the consolidation behavior. A graphical user interface (GUI) has been programmed for potential users based on the proposed model and numerical algorithm. The results indicate that heat preloading improves the permeability of soil, resulting in a larger settlement of soil. Heat preloading serves as an effective method to enhance the efficiency of PVD.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106852"},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Torsional dynamic response of rigid footings and pile foundations for various end-conditions","authors":"Bipin K. Gupta","doi":"10.1016/j.compgeo.2024.106857","DOIUrl":"10.1016/j.compgeo.2024.106857","url":null,"abstract":"<div><div>An analysis for torsional dynamic response of rigid footings and pile foundations with various end-conditions: half-space, soil stratum, and end-bearing is demonstrated. The interaction adjacent to footing/pile is simulated through the Vlasov-Leont′ev foundation model. Because of stress singularity at the pile/footing base, the end-conditions (half-space and soil stratum) at the foundation base are incorporated in the boundary conditions of the analysis through expressions in literature. The expressions are obtained from the torsional dynamic response of a rigid disk welded to the surface of the viscoelastic media. Several expressions, from various formulations, are employed, and the degree of accuracy of each expression is assessed through an extensive comparative study with rigorous and simplified solutions in the literature. The expression that is most accurate and captures the mechanics of the interaction problem in a half-space/soil stratum is extracted and proposed. The accuracy of the Vlasov-Leont′ev foundation model is also assessed for end-bearing pile foundations. For each end-condition, parametric studies are also performed for a wide range of frequencies, and pile-slenderness and stiffness ratios, and appropriate conclusions derived from the studies are reported. Comparisons with experimental results are shown to demonstrate the applicability of the analysis to geotechnical engineering practice.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106857"},"PeriodicalIF":5.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Ji , Xin Yin , Tong Zhang , Bin Tong , Shigui Du
{"title":"Polynomial response surface-informed neural network for implicit slope reliability analysis and uncertainty quantification","authors":"Jian Ji , Xin Yin , Tong Zhang , Bin Tong , Shigui Du","doi":"10.1016/j.compgeo.2024.106832","DOIUrl":"10.1016/j.compgeo.2024.106832","url":null,"abstract":"<div><div>In slope reliability analysis, surrogate models are usually designed to replace the computationally expensive performance functions. For slope reliability problems considering high dimensional simulation of soil spatial variability, the surrogate model must be constructed using sufficient sampling points in order to cover the high dimension domain of model parameters, potentially making its robustness sensitive to the sample size. This paper proposes a novel surrogate modelling framework, the PRS-informed NN (alternative to the physics-informed neural network, PINN), which integrates a polynomial response surface (PRS, representing a small-scale physical law indicator) with a neural network surrogate model (NN, representing a large-scale model performance) to enhance the modelling performance across various sample sizes and reduce uncertainty. Based on the Karhunen-Loeve expansion technique, the dimension of variables involved in random field discretization is firstly reduced, simplifying the computation for probability of slope failure (<em>P<sub>f</sub></em>). The PRS that plays a role of basic physical law of slope stability model, is integrated into the neural network by adjusting the training loss function. The feasibility of the proposed method is demonstrated through a synthetic slope model and a real-world slope case study. Results show that the proposed framework improves the accuracy of neural network surrogate models, especially with smaller sample sizes. At last, both aleatory and epistemic uncertainties in the surrogate modelling are quantified, followed by a detailed discussion of the confidence interval for the <em>P<sub>f</sub></em> estimation.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106832"},"PeriodicalIF":5.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of TBM cutter wear in heterogeneous ground under high ambient pressure","authors":"Nan Zhang , Shui-Long Shen","doi":"10.1016/j.compgeo.2024.106837","DOIUrl":"10.1016/j.compgeo.2024.106837","url":null,"abstract":"<div><div>To prevent tunnel face collapse in heterogeneous ground, the applied face pressure in the excavation chamber can be increased to stabilise the tunnel face, which may hinder cutter rotation during tunnel boring machine (TBM) tunnelling. This study proposes a TBM cutter wear prediction model that considers the impact of the variation in the cutter normal force on the cutterhead owing to the high applied face pressure and low penetration rate. First, the cutter motion mode in heterogeneous ground is investigated. The cutter is found to slide when cutting soft rock based on an analysis of the field data. The evolution process of the cutter wear morphology under heterogeneous ground conditions is summarised. A method for calculating the cutter normal force when the cutter slides on the tunnel face is proposed by referring to the cutting mechanism of the drag bits. The cutter hardness is measured on-site using a portable hardness tester. A semi-empirical model considering the variation in the cutter normal force on the cutterhead is proposed to predict the cutter wear in heterogeneous ground. Wear prediction is compared with other predictive models and field data for validation, and the discrepancies between the different models are discussed. The results show that the proposed model is effective for predicting TBM cutter wear under complex geological conditions.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106837"},"PeriodicalIF":5.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao-Ruo Xu , Ning Zhang , Zhen-Yu Yin , Pierre Guy Atangana Njock
{"title":"GeoLLM: A specialized large language model framework for intelligent geotechnical design","authors":"Hao-Ruo Xu , Ning Zhang , Zhen-Yu Yin , Pierre Guy Atangana Njock","doi":"10.1016/j.compgeo.2024.106849","DOIUrl":"10.1016/j.compgeo.2024.106849","url":null,"abstract":"<div><div>Large language models (LLMs) have achieved remarkable success in various industrial and research fields, enhancing work efficiency by assisting machines in comprehending human language. In geotechnical design where extensive repetitive cross-checking of design codes consumes considerable time and labour, the utilization of LLMs to enhance design procedures has not been explored before. The challenge is to ensure that LLMs accurately comprehend professional geotechnical information from text and execute mathematical calculations correctly. This study makes the first attempt at developing a specialized LLM framework, GeoLLM, integrated with an innovative prompt engineering strategy to extract professional information from text and enable accurate mathematical calculations. GeoLLM is applied to the design of single piles involving bearing capacity and settlement calculations. The results reveal that GeoLLM exhibits excellent performance in single pile cases. Additionally, compared with LLMs of varying architectures and sizes, commercial LLMs with over 100 billion parameters presented outstanding comprehensive capacities, while those with 1.8 ∼ 72 billion parameters degraded relatively. These findings indicate the promising capacity of GeoLLM to address professional tasks in geotechnical design.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106849"},"PeriodicalIF":5.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new three-dimensional strength criterion considering the transverse isotropy based on the α-Spatial Mobilized Plane","authors":"Kun Wang, Daofei Tang, Tian Fang, Changhong Wang","doi":"10.1016/j.compgeo.2024.106853","DOIUrl":"10.1016/j.compgeo.2024.106853","url":null,"abstract":"<div><div>Natural geotechnical materials are affected by sedimentation and exhibit significant anisotropy. To study the transverse isotropy characteristics of soil, the influence of intermediate principal stress and loading direction must be considered. Currently, research on transverse isotropy primarily focuses on the modified stress space, which is cumbersome to apply in multi-yield surface constitutive models. To describe the three-dimensional mechanical properties of geomaterials in real stress space, the α-Spatial Mobilized Plane strength criterion is introduced. Then, combined with the structure tensor, the transverse isotropic three-dimensional strength criterion can account for the effect of the loading angle. Finally, the three-dimensional strengths of Fukakusa clay, unsaturated SP-SC soils, uncemented Monterey sands, Yamaguchi marble, San Francisco Bay mud, Toyoura sand, and Santa Monica Beach sand are predicted on the <em>π</em>-plane. The results show that the <span><math><mrow><msubsup><mi>α</mi><mi>m</mi><mi>n</mi></msubsup><mo>-</mo><mi>S</mi><mi>M</mi><mi>P</mi></mrow></math></span> criterion, in the context of transverse isotropy, can describe the three-dimensional mechanical properties reasonably, and it can provide an accurate strength criterion for geotechnical engineering practice.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106853"},"PeriodicalIF":5.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaohua Bao , Zhizao Bao , Jun Shen , Xiangsheng Chen , Hongzhi Cui
{"title":"An optimization DEM modelling method for soil-fibre undrained cyclic loading tests model based on the influence range of fibre","authors":"Xiaohua Bao , Zhizao Bao , Jun Shen , Xiangsheng Chen , Hongzhi Cui","doi":"10.1016/j.compgeo.2024.106846","DOIUrl":"10.1016/j.compgeo.2024.106846","url":null,"abstract":"<div><div>The computational cost of discrete element modelling is high owing to the limitations of particle size and contact in fibre modelling. This paper proposes an optimised discrete element method (DEM) for a hybrid model of soil and fibres based on the fibre influence range. First, a relative velocity state function is established based on the relative motion state between the fibres and soil particles under undrained cyclic loading. Subsequently, the influence range of the fibres is determined using the relative velocity function based on the first few cycles of the undrained cyclic loading numerical tests. Cluster and clump models of the fibre are then generated based on the influence range of the fibre. Finally, a symmetrical shape of the optimised model is developed by extracting the distribution length of the edge curve of the influence range along the vertical direction of the axis. In this study, the proposed optimised DEM was validated through a series of undrained cyclic loading numerical tests on fibre-reinforced soil. The results of the optimised model were highly consistent with those of the traditional model, and the computational time was significantly reduced. The cyclic loading timing for determining the range of influence of the fibre was analysed. The optimised model based on the influence range of the 15th cycles not only restored almost the same results but also saved the calculation cost by nearly eight times. The optimised model established based on the influence range after the 15th cycles had a slight influence on the results. In addition, the applicability of the optimised model is discussed. This paper provides new insights into the establishment of a hybrid model of soil and fibres.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106846"},"PeriodicalIF":5.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of particle size distribution on the collapse of wet polydisperse granular materials","authors":"Yisong Wu, Hu Tang, Yuantao Zhang, Dengming Wang","doi":"10.1016/j.compgeo.2024.106854","DOIUrl":"10.1016/j.compgeo.2024.106854","url":null,"abstract":"<div><div>Low-saturation liquid-containing granular materials are commonly encountered in both natural and industrial settings, where interstitial liquids significantly affect the motion of particles, while particle size polydispersity plays a crucial role in determining the level of system cohesion. In this study, the collapse of wet polydisperse granular columns is numerically investigated based on the developed discrete element model, with corresponding dam-break experiments performed to validate our numerical model and methodology. The dependence of the dynamics and flow mobility on particle size distribution is primarily examined, and the underlying mechanisms are also explored by analyzing particle path lengths and average fidelity. Building upon the effective Bond number proposed using the mixing theory, a macroscopic cohesion parameter at the material scale is defined by considering the dependence of the collapse on the system size effect. The relevance of this cohesion parameter in describing different wet polydisperse granular collapses is further validated based on our designed experimental tests and DEM simulations. The approach of constructing the cohesion parameters at different scales can be extended to characterize cohesion effects in more complex wet polydisperse granular flows and describe their associated rheological behaviors.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106854"},"PeriodicalIF":5.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheng Zhang , Alfonso Rodriguez-Dono , Fei Song , Zilong Zhou
{"title":"Numerical analyses of spherical indenter intrusion into sandstone: From laboratory tests to numerical simulations","authors":"Sheng Zhang , Alfonso Rodriguez-Dono , Fei Song , Zilong Zhou","doi":"10.1016/j.compgeo.2024.106847","DOIUrl":"10.1016/j.compgeo.2024.106847","url":null,"abstract":"<div><div>To explore the mechanical mechanisms of rock fracturing under compression during ball milling. The study investigates the effects of intrusion depth and indenter diameter on the evolution of stresses and plastic strains, integrating laboratory tests and numerical predictions. The results reveal a reduction in both axial and radial stresses with increasing intrusion depth into the rock. Shear stress experiences an initial rise followed by a decline, while circumferential stress demonstrates an initial increase followed by a rapid decrease in the radial direction. As the intrusion deepens, the predominant influence on plastic strain of rock shifts from shear stress dominance to a combined dominance of shear and circumferential stresses. The influence of the indenter diameter on the stress field diminishes following an exponential decay pattern. In terms of the plastic strain field, smaller indenters are more likely to induce plastic failure due to shear and circumferential stresses, larger indenters are more prone to plastic failure induced solely by shear stresses. As the number of indenters increases, the integration of the stress and plastic strain fields is enhanced. This implies that introducing more spherical indenters amplifies the collaborative effect, leading to a more cohesive fracturing of the rock.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106847"},"PeriodicalIF":5.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A viscoplastic Cosserat peridynamics and the simulation of creep failure of geomaterials","authors":"Xianyang Guo, Ji Wan, Xihua Chu","doi":"10.1016/j.compgeo.2024.106831","DOIUrl":"10.1016/j.compgeo.2024.106831","url":null,"abstract":"<div><div>In this study, within the framework of Cosserat peridynamics, the viscoplastic Perzyna’s model and the modified Drucker-Prager criterion are introduced to investigate the creep failure of geomaterials. The biaxial compressive creep for soft rock and the uniaxial creep for sandstone with a prefabricated flaw are designed to verify the proposed model. The effects of lateral pressure, internal friction angle, and cohesion on creep failure are investigated. Results show that the three stages of creep and the corresponding damage patterns are successfully predicted, which accords with the observations of numerical and experimental results. The larger lateral pressure makes it harder for geomaterials to creep. Geomaterials with a larger internal friction angle or cohesion have stronger shear resistance and less plastic deformation, making them less susceptible to creep failure. Besides, the Cosserat internal length <em>l</em><sub>c</sub> affects the inclination angles of the shear band.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106831"},"PeriodicalIF":5.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}