{"title":"UG4平台油藏模拟的高可扩展性数值框架","authors":"Shuai Lu","doi":"10.1016/j.compgeo.2025.107597","DOIUrl":null,"url":null,"abstract":"<div><div>The modeling and simulation of multiphase fluid flow have received significant attention from the reservoir engineering research community. Many time discretization schemes for multiphase flow equations are either explicit or semi-implicit, relying on the decoupling between the saturation equation and the pressure equation. In this study, we delve into a fully coupled and fully implicit framework for simulating multiphase flow in heterogeneous porous media, considering both the gravity and capillary effects. We utilize the Vertex-Centered Finite Volume Method for spatial discretization and propose an efficient implementation of capillary barrier condition for heterogeneous porous media within the current scheme. Notably, we introduce the Linearly Implicit Extrapolation Method (LIMEX) with an error estimator, adapted for the first time to multiphase flow problems. To solve the resulting linear system, we employ the BiCGSTAB method with the Geometric Multigrid (GMG) preconditioner. The implementations of the models and methods are based on the open-source software: UG4. The results from parallel computations on the supercomputer demonstrate that the scalability of our proposed framework is sufficient, supporting a scale of thousands of processors with Degrees of Freedom (DoF) extending into the billions.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"188 ","pages":"Article 107597"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly scalable numerical framework for reservoir simulation on UG4 platform\",\"authors\":\"Shuai Lu\",\"doi\":\"10.1016/j.compgeo.2025.107597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The modeling and simulation of multiphase fluid flow have received significant attention from the reservoir engineering research community. Many time discretization schemes for multiphase flow equations are either explicit or semi-implicit, relying on the decoupling between the saturation equation and the pressure equation. In this study, we delve into a fully coupled and fully implicit framework for simulating multiphase flow in heterogeneous porous media, considering both the gravity and capillary effects. We utilize the Vertex-Centered Finite Volume Method for spatial discretization and propose an efficient implementation of capillary barrier condition for heterogeneous porous media within the current scheme. Notably, we introduce the Linearly Implicit Extrapolation Method (LIMEX) with an error estimator, adapted for the first time to multiphase flow problems. To solve the resulting linear system, we employ the BiCGSTAB method with the Geometric Multigrid (GMG) preconditioner. The implementations of the models and methods are based on the open-source software: UG4. The results from parallel computations on the supercomputer demonstrate that the scalability of our proposed framework is sufficient, supporting a scale of thousands of processors with Degrees of Freedom (DoF) extending into the billions.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"188 \",\"pages\":\"Article 107597\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X25005464\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25005464","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A highly scalable numerical framework for reservoir simulation on UG4 platform
The modeling and simulation of multiphase fluid flow have received significant attention from the reservoir engineering research community. Many time discretization schemes for multiphase flow equations are either explicit or semi-implicit, relying on the decoupling between the saturation equation and the pressure equation. In this study, we delve into a fully coupled and fully implicit framework for simulating multiphase flow in heterogeneous porous media, considering both the gravity and capillary effects. We utilize the Vertex-Centered Finite Volume Method for spatial discretization and propose an efficient implementation of capillary barrier condition for heterogeneous porous media within the current scheme. Notably, we introduce the Linearly Implicit Extrapolation Method (LIMEX) with an error estimator, adapted for the first time to multiphase flow problems. To solve the resulting linear system, we employ the BiCGSTAB method with the Geometric Multigrid (GMG) preconditioner. The implementations of the models and methods are based on the open-source software: UG4. The results from parallel computations on the supercomputer demonstrate that the scalability of our proposed framework is sufficient, supporting a scale of thousands of processors with Degrees of Freedom (DoF) extending into the billions.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.