Fungal Ecology最新文献

筛选
英文 中文
Tracing the spatial extent and lag time of carbon transfer from Picea abies to ectomycorrhizal fungi differing in host type, taxonomy, or hyphal development 追踪黑松向宿主类型、分类或菌丝发育不同的外生菌根真菌转移碳的空间范围和滞后时间
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-12-05 DOI: 10.1016/j.funeco.2023.101315
Erik A. Hobbie , Sonja G. Keel , Tamir Klein , Ido Rog , Matthias Saurer , Rolf Siegwolf , Michael R. Routhier , Christian Körner
{"title":"Tracing the spatial extent and lag time of carbon transfer from Picea abies to ectomycorrhizal fungi differing in host type, taxonomy, or hyphal development","authors":"Erik A. Hobbie ,&nbsp;Sonja G. Keel ,&nbsp;Tamir Klein ,&nbsp;Ido Rog ,&nbsp;Matthias Saurer ,&nbsp;Rolf Siegwolf ,&nbsp;Michael R. Routhier ,&nbsp;Christian Körner","doi":"10.1016/j.funeco.2023.101315","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101315","url":null,"abstract":"<div><p>We used five mature <span><span>Picea abies</span></span> continuously labeled with <sup>13</sup>C-depleted CO<sub>2</sub><span><span> in a broadleaf-dominated Swiss forest to assess the spatial extent and lag time of carbon fluxes to </span>ectomycorrhizal fungi<span> differing in hyphal development and host association. We traced labeled carbon into ectomycorrhizal sporocarps collected for two seasons at different distances from labeled </span></span><em>Picea</em>. <em>Picea</em><span>-derived photosynthate reached conifer-specific sporocarps up to 6–12 m away and reached other sporocarps only 0–6 m away. At 0–6 m, genera of lesser hyphal development acquired more </span><em>Picea</em><span><span>-derived photosynthate than those of greater hyphal development, presumably from preferential fungal colonization of inner </span>root zones by the former genera. Correlations of sporocarp δ</span><sup>13</sup>C with daily solar radiation integrated for different periods indicated that carbon fluxes from <em>Picea</em><span> to sporocarps peaked 17–21 days after photosynthesis. Thus, these results provided rough estimates of the spatial extent and temporal lags of carbon transfer from </span><em>Picea</em> to ectomycorrhizal fungi.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"68 ","pages":"Article 101315"},"PeriodicalIF":2.9,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do aquatic fungal environmental DNA assemblages reflect the surrounding terrestrial sporocarp communities? 水生真菌环境DNA组合是否反映了周围陆生孢子体群落?
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-29 DOI: 10.1016/j.funeco.2023.101311
Yoriko Sugiyama , Shunsuke Matsuoka , Yoshito Shimono , Masayuki Ushio , Hideyuki Doi
{"title":"Do aquatic fungal environmental DNA assemblages reflect the surrounding terrestrial sporocarp communities?","authors":"Yoriko Sugiyama ,&nbsp;Shunsuke Matsuoka ,&nbsp;Yoshito Shimono ,&nbsp;Masayuki Ushio ,&nbsp;Hideyuki Doi","doi":"10.1016/j.funeco.2023.101311","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101311","url":null,"abstract":"<div><p>The relationship between aquatic environmental DNA (eDNA) assemblages in rivers and the surrounding terrestrial fungal communities has been poorly investigated. Here, we focused on fungi that form soft sporocarps (soft fungi). Two years of sporocarp and aquatic eDNA sampling were conducted at a fragmented forest site, and the soft-fungal assemblages and their temporal dynamics were compared between these two sample types. Aquatic eDNA yielded approximately 1.5 times the operational taxonomic units (OTUs) compared to sporocarps and covered approximately half of the OTUs from sporocarp samples. Lineages that seldom form sporocarps or form inconspicuous sporocarps were successfully detected from aquatic eDNA. Although the OTU composition differed between sporocarp and aquatic eDNA, their temporal dynamics were similar, with both showing a 1-year periodicity. Aquatic eDNA provides insights into fungal diversity and temporal dynamics, but does not fully reflect terrestrial fungi diversity.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101311"},"PeriodicalIF":2.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000880/pdfft?md5=a82999876504a72f5374d492d50882d0&pid=1-s2.0-S1754504823000880-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138453955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symbiosis with endophyte leads to greater C accumulation in grassland soils 与内生菌共生导致草地土壤中碳积累量增大
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-27 DOI: 10.1016/j.funeco.2023.101301
Farshid Nourbakhsh
{"title":"Symbiosis with endophyte leads to greater C accumulation in grassland soils","authors":"Farshid Nourbakhsh","doi":"10.1016/j.funeco.2023.101301","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101301","url":null,"abstract":"<div><p><em>Epichloë coenophiala</em> forms aboveground symbiotic relationships with tall fescue (<em>Festuca arundinacea</em>) and provides the host with better fitness. This study investigated the effects of endophyte symbiosis on carbon mineralization in soil. Two soils were amended with endophyte-infected (E+) or endophyte-free (E−) residues of two tall fescue genotypes. At the end of the experiment, CO<sub>2</sub> evolution rates were monitored to quantify the mineralized carbon. The indices of carbon mineralization were significantly greater (LSD, <em>P</em> &lt; 0.05) in the E−compared to E+ plant residue treated soils. Cellulose, hemicellulose, lignin contents, C:N and lignin:N ratios were significantly greater (LSD, <em>P</em> &lt; 0.05) in soils with the E<sup>+</sup> residues than in those with E<sup>−</sup> residues. Additionally, the E+ plant residues consistently contained significantly less N (LSD, <em>P</em> &lt; 0.05). Overall, it is concluded that grass-endophyte symbiosis results in the production of less biodegradable plant residues, in turn reducing the residue biodegradability and promoting greater C accumulation in the soils.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101301"},"PeriodicalIF":2.9,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000788/pdfft?md5=e0f82d756d5546f9a283a2330fed3b90&pid=1-s2.0-S1754504823000788-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyphal exploration strategies and habitat modification of an arbuscular mycorrhizal fungus in microengineered soil chips 微工程土壤芯片中丛枝菌根真菌菌丝探索策略及生境改造
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-24 DOI: 10.1016/j.funeco.2023.101302
Edith C. Hammer , Carlos Arellano-Caicedo , Paola Micaela Mafla-Endara , E. Toby Kiers , Tom Shimizu , Pelle Ohlsson , Kristin Aleklett
{"title":"Hyphal exploration strategies and habitat modification of an arbuscular mycorrhizal fungus in microengineered soil chips","authors":"Edith C. Hammer ,&nbsp;Carlos Arellano-Caicedo ,&nbsp;Paola Micaela Mafla-Endara ,&nbsp;E. Toby Kiers ,&nbsp;Tom Shimizu ,&nbsp;Pelle Ohlsson ,&nbsp;Kristin Aleklett","doi":"10.1016/j.funeco.2023.101302","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101302","url":null,"abstract":"<div><p>Arbuscular mycorrhizal fungi (AMF) are considered ecosystem engineers, but the interactions of their mycelium with their immediate surroundings are largely unknown. In this study, we used microfluidic chips, simulating artificial soil structures, to study foraging strategies and habitat modification of <em>Rhizophagus irregularis</em> symbiotically associated to carrot roots. AMF hyphae foraged over long distances in nutrient-void spaces, preferred straight over tortuous passages, anastomosed and showed strong inducement of branching when encountering obstacles. We measured bi-directional transport of cellular content inside active hyphae and documented strategic allocation of biomass within the mycelium via cytoplasm retraction from inefficient paths. <em>R. irregularis</em> modified pore-spaces in the chips by clogging pores with irregularly shaped spores. We suggest that studying AMF hyphal behaviour in spatial settings can explain phenomena reported at bulk scale such as AMF modification of water retention in soils. The use of microfluidic soil chips in AMF research opens up novel opportunities to study their ecophysiology and interactions with both biotic and abiotic factors.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101302"},"PeriodicalIF":2.9,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175450482300079X/pdfft?md5=fc34e418d06b02ba020d2823be6a4088&pid=1-s2.0-S175450482300079X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climatic shifts threaten alpine mycorrhizal communities above the treeline 气候变化威胁着高山树木线以上的菌根群落
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-17 DOI: 10.1016/j.funeco.2023.101300
R. Arraiano-Castilho , M.I. Bidartondo , T. Niskanen , I. Brunner , S. Zimmermann , B. Senn-Irlet , B. Frey , U. Peintner , T. Mrak , L.M. Suz
{"title":"Climatic shifts threaten alpine mycorrhizal communities above the treeline","authors":"R. Arraiano-Castilho ,&nbsp;M.I. Bidartondo ,&nbsp;T. Niskanen ,&nbsp;I. Brunner ,&nbsp;S. Zimmermann ,&nbsp;B. Senn-Irlet ,&nbsp;B. Frey ,&nbsp;U. Peintner ,&nbsp;T. Mrak ,&nbsp;L.M. Suz","doi":"10.1016/j.funeco.2023.101300","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101300","url":null,"abstract":"<div><p>The European Alps are experiencing more than twice the increase in air temperature observed in the rest of the world. Thus, the treeline ecotone, and the unique habitats above it, offer a preview of drastic changes in plant and animal communities. However, our knowledge about climate change impacts on microbial diversity belowground is scarce. Here we investigate how upslope shift of the treeline ecotone, associated with changes in soil nutrient content, temperature and precipitation, will influence alpine ectomycorrhizal (EM) communities of <em>Dryas octopetala</em>, <em>Bistorta vivipara</em> and <em>Salix herbacea</em> across different habitat types in the Alps. We also assessed the degree of EM community taxonomic composition turnover in these habitats across three different climatic projections for 2040 and 2070. Our results indicate that the specialized EM fungal communities from snowbed habitats will be mostly negatively influenced under the current trajectory of environmental shifting predicted for the region. In contrast, fungi from the treeline ecotone, having wider niches, will be positively influenced by future climate and extend upwards. In addition, our predictions of EM community turnover for putative future climatic scenarios revealed high rates of turnover across the entire alpine region. This, together with glacier retreats, will aid colonization of alpine snowbed habitats by new EM plants and associated fungi, bringing additional pressures on local mycorrhizas and likely leading to fungal species extinctions.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101300"},"PeriodicalIF":2.9,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000776/pdfft?md5=348870f24bcf09d5d495b4378c5b6ab2&pid=1-s2.0-S1754504823000776-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138475015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen addition drives changes in arbuscular mycorrhizal fungal richness through changes in plant species richness in revegetated alpine grassland 氮添加通过植物物种丰富度的变化驱动高寒草地丛枝菌根真菌丰富度的变化
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101303
Guoxi Shi , Zhonghua Zhang , Li Ma , Yongjun Liu , Yibo Wang , Jean Yves Uwamungu , Huyuan Feng , Shikui Dong , Buqing Yao , Huakun Zhou
{"title":"Nitrogen addition drives changes in arbuscular mycorrhizal fungal richness through changes in plant species richness in revegetated alpine grassland","authors":"Guoxi Shi ,&nbsp;Zhonghua Zhang ,&nbsp;Li Ma ,&nbsp;Yongjun Liu ,&nbsp;Yibo Wang ,&nbsp;Jean Yves Uwamungu ,&nbsp;Huyuan Feng ,&nbsp;Shikui Dong ,&nbsp;Buqing Yao ,&nbsp;Huakun Zhou","doi":"10.1016/j.funeco.2023.101303","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101303","url":null,"abstract":"<div><p>Nitrogen (N) addition not only promotes the restoration of degraded grasslands, but also threatens ecosystem functioning through the loss of species richness. Thus, a deep understanding of the effect of N addition on the richness of key organisms in restored grasslands is critical to sustainably restoring degraded grasslands. We conducted a 4-year N addition experiment to investigate the response of both plant and arbuscular mycorrhizal (AM) fungal richness to the combined addition of ammonium (Am) and nitrate (Ni) in a revegetated grassland rehabilitated (with a focus on restoration) on the Qinghai–Tibet Plateau. Both nitrogen forms were added at three levels: 0, 10, and 20 g N m<sup>−2</sup> year<sup>−1</sup>. By itself, Ni addition of 20 g N m<sup>−2</sup> year<sup>−1</sup> (Ni20) reduced both plant and AM fungal richness, while Am addition of 20 g N m<sup>−2</sup> year<sup>−1</sup> (Am20) had no significant effect on them. However, when Ni and Am were combined, only Ni20 plus Am20 among all combinations reduced both plant and AM fungal richness. Both soil nitrate-N and plant species richness jointly drove changes in AM fungal richness, but plant species richness was the main factor affecting AM fungal richness under N addition. Our results suggest that minimizing the loss of AM fungi caused by plant species loss resulting from N addition is a key means to sustainably restore degraded grasslands.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"67 ","pages":"Article 101303"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000806/pdfft?md5=58a8b9d8d1dd080ebecfd323ed9119c3&pid=1-s2.0-S1754504823000806-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138423061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Black pepper pathogen suppression: Divergent rhizosphere fungal communities of healthy and diseased plants yield new insights for orchard management in Vietnam 黑胡椒病原菌抑制:健康和患病植株的不同根际真菌群落为越南果园管理提供了新的见解
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101295
Chinedu C. Obieze , Paul B.L. George , Brian Boyle , Damase P. Khasa
{"title":"Black pepper pathogen suppression: Divergent rhizosphere fungal communities of healthy and diseased plants yield new insights for orchard management in Vietnam","authors":"Chinedu C. Obieze ,&nbsp;Paul B.L. George ,&nbsp;Brian Boyle ,&nbsp;Damase P. Khasa","doi":"10.1016/j.funeco.2023.101295","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101295","url":null,"abstract":"<div><p><span><span><span>Complex interactions involving soil physicochemical parameters and plant-associated microbial communities<span> determine crop health. In Vietnam, this process is poorly understood in the context of black pepper production. Specifically, there is a dearth of information for improving the suppression of pathogenic fungi. Understanding the environmental dynamics influencing the distribution of these pathogens would facilitate the development and use of biological agents in black pepper pathogen management. Here, the molecular profiles of </span></span>fungal communities from the </span>rhizosphere<span> of healthy and unhealthy Vietnamese black pepper orchards and their relationships were determined. Additionally, co-occurrence analyses with a previously constructed bacterial dataset identified taxa indicative of soil suppression. Alpha diversity of total fungi was influenced by only environmental factors, while that of arbuscular mycorrhizal fungi was more responsive to orchard health state. </span></span><span><em>Glomus</em></span> sp., <span><em>Rhizophagus</em></span> sp., <span><em>Purpureocillium</em></span> sp. and <em>Plectosphaerella</em> sp. were the most responsive genera to orchard health state. Potential fungal pathogens were <em>more prevalent in the unhealthy orchards.</em><span> Co-occurrence network analyses revealed that unhealthy orchards were less connected, had longer path distance and were missing putative pathogen-to-biocontrol interactions common in the healthy orchards. Soil electrical conductivity and potassium may be key factors in differentiating fungal communities of unhealthy from healthy orchards. This work highlights important microbial species and environmental considerations critical to improved black pepper management strategies.</span></p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101295"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134667519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery kinetics of epiphytic lichen diversity after dieback during a continuously wet season 连续湿季枯死后附生地衣多样性恢复动力学
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101299
Yngvar Gauslaa
{"title":"Recovery kinetics of epiphytic lichen diversity after dieback during a continuously wet season","authors":"Yngvar Gauslaa","doi":"10.1016/j.funeco.2023.101299","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101299","url":null,"abstract":"<div><p>Epiphytic lichens are considered sensitive indicators of environmental change. Excess water is known to depress their photosynthesis, but the effect of long-lasting rain on species richness of epiphytic lichens is rarely reported. By annually repeated records of macrolichen species richness on tree trunks over a period of 33 years that included one long rainy season in year 2000, a strong decline in macrolichen richness on tree trunks was detected after the unusually wet autumn. Afterwards, the lichen richness slowly recovered, but had not yet fully recovered 19 years after the dieback. Thereby, long rainy periods can cause lasting depression in epiphytic lichen richness, and continuous rain should be considered a possible threat to lichens in regions like northern Europe where global change predicts enhanced rainfall frequency.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101299"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504823000764/pdfft?md5=a4b025cb9590fd60ed0b4b771be281f5&pid=1-s2.0-S1754504823000764-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134667521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing oomycete communities after windstorm disturbance in alpine Norway spruce forests: A metabarcoding approach 表征挪威高山云杉林风暴扰动后卵菌群落:元条形码方法
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101296
Davide Nardi , Duccio Migliorini , Cristiano Vernesi , Matteo Girardi , Alberto Santini
{"title":"Characterizing oomycete communities after windstorm disturbance in alpine Norway spruce forests: A metabarcoding approach","authors":"Davide Nardi ,&nbsp;Duccio Migliorini ,&nbsp;Cristiano Vernesi ,&nbsp;Matteo Girardi ,&nbsp;Alberto Santini","doi":"10.1016/j.funeco.2023.101296","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101296","url":null,"abstract":"<div><p><span>Understanding the effects of windstorm disturbances on soil communities is of pivotal importance. Oomycete<span><span><span> communities host some species of plant pathogens<span>, which might affect the forest regeneration after the disturbance. Here, we sampled a large area to compare three habitats (e.g., windfall, old clearings, and undisturbed spruce forest) along a gradient of elevation and slope. We used an </span></span>eDNA </span>metabarcoding approach targeting the </span></span><em>rps10</em><span> gene. Our results showed that both wind disturbance and underlying topography can influence the richness of oomycetes. Higher richness of oomycetes was found in disturbed sites and high steepness. We did not find differences in community composition among the different habitat types at the landscape scale. However, we found significant differences among drainage basins at larger spatial scale. Our work contributed to the understanding of the oomycete communities in Norway spruce forests affected by wind disturbance.</span></p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101296"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134836379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate change and plant-microbe interactions: Water-availability influences the effective specialization of a fungal pathogen 气候变化和植物-微生物的相互作用:水分有效性影响真菌病原体的有效特化
IF 2.9 3区 环境科学与生态学
Fungal Ecology Pub Date : 2023-11-16 DOI: 10.1016/j.funeco.2023.101286
Jakob Joachin , Camryn Kritzell, Elliot Lagueux, Noah C. Luecke , Kerri M. Crawford
{"title":"Climate change and plant-microbe interactions: Water-availability influences the effective specialization of a fungal pathogen","authors":"Jakob Joachin ,&nbsp;Camryn Kritzell,&nbsp;Elliot Lagueux,&nbsp;Noah C. Luecke ,&nbsp;Kerri M. Crawford","doi":"10.1016/j.funeco.2023.101286","DOIUrl":"https://doi.org/10.1016/j.funeco.2023.101286","url":null,"abstract":"<div><p><span>Through species-specific effects on plants, pathogens play a key role in structuring plant communities. A change in abiotic context, such as those mediated by climate change, may alter plant communities through changes in the specificity of plant-pathogen interactions. To test how water availability influenced the specificity of plant-pathogen interactions, we grew paired congeners of three native and three nonnative coastal prairie plant species with or without a pathogenic soil fungus, </span><span><em>Fusarium</em><em> incarnatum-equiseti</em></span> species complex 6 b<em>,</em><span> under low, average, and high water treatments. Across the plant species tested, the </span><em>Fusarium</em> treatment had stronger negative and species-specific effects on plant biomass at high water availability than low water availability. If generalizable, our results suggest that stronger and more species-specific pathogen effects could drive changes in plant community composition in wetter conditions, but plant-pathogen interactions may be less important for plant community structure in drier conditions.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101286"},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134836378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信