Sophie Stroheker , Vivanne Dubach , Markus Schlegel , Thomas N. Sieber
{"title":"Root contact dominates vegetative transmission of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC)","authors":"Sophie Stroheker , Vivanne Dubach , Markus Schlegel , Thomas N. Sieber","doi":"10.1016/j.funeco.2024.101351","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>Phialocephala fortinii</em> s.l. – <em>Acephala applanata</em> species complex (PAC) is composed of closely related endophytic ascomycetes colonizing roots of coniferous trees. Their means of dispersal and teleomorphic form are still unknown. Accordingly, we focused on vegetative mycelial spread of PAC i) via root contacts from PAC-inoculated to PAC-free saplings, ii) through semi-sterile soil from PAC-colonized to PAC-free saplings (without contact) and iii) through semi-sterile soil from PAC-colonized substrate to PAC-free saplings (without contact). Five PAC strains were selected for the experiment. All three modes of PAC transmission found support and were confirmed by metabarcoding. However, transmission via root contact was found to be the most successful. Growth of PAC through soil was also observed whereby transmission from PAC-colonized substrate to PAC-free saplings was more frequent than transmission from PAC-colonized to PAC-free saplings. The transmission rates depended on the PAC strain. Overall, we found support for vegetative transmission of PAC via root contact and active mycelial spread through semi-sterile soil.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101351"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000229/pdfft?md5=b95479d486b251a64af738323f97101e&pid=1-s2.0-S1754504824000229-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504824000229","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Phialocephala fortinii s.l. – Acephala applanata species complex (PAC) is composed of closely related endophytic ascomycetes colonizing roots of coniferous trees. Their means of dispersal and teleomorphic form are still unknown. Accordingly, we focused on vegetative mycelial spread of PAC i) via root contacts from PAC-inoculated to PAC-free saplings, ii) through semi-sterile soil from PAC-colonized to PAC-free saplings (without contact) and iii) through semi-sterile soil from PAC-colonized substrate to PAC-free saplings (without contact). Five PAC strains were selected for the experiment. All three modes of PAC transmission found support and were confirmed by metabarcoding. However, transmission via root contact was found to be the most successful. Growth of PAC through soil was also observed whereby transmission from PAC-colonized substrate to PAC-free saplings was more frequent than transmission from PAC-colonized to PAC-free saplings. The transmission rates depended on the PAC strain. Overall, we found support for vegetative transmission of PAC via root contact and active mycelial spread through semi-sterile soil.
期刊介绍:
Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.