飓风干扰对菌根共生网络的影响:新热带地区的复原力和群落动态

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY
Julieta Alvarez-Manjarrez , Mohammad Bahram , Sergei Põlme , Roberto Garibay-Orijel
{"title":"飓风干扰对菌根共生网络的影响:新热带地区的复原力和群落动态","authors":"Julieta Alvarez-Manjarrez ,&nbsp;Mohammad Bahram ,&nbsp;Sergei Põlme ,&nbsp;Roberto Garibay-Orijel","doi":"10.1016/j.funeco.2024.101354","DOIUrl":null,"url":null,"abstract":"<div><p>Extreme climatic events and related disturbances such as hurricanes are increasingly altering forest ecosystems. How these events impact forest fungal communities is poorly characterized. We examined the effect of a hurricane on mycorrhizal community structure and potential interspecific fungal interactions, inferred from OTU co-occurrences. We characterized the root fungal communities of dual-mycorrhizal plants from nine plots during two consecutive years after a category four hurricane impacted the coastal Mexican Pacific tropical forest in Jalisco. Presence-abundance matrices were used to calculate properties of mycorrhizal networks including nestedness and modularity, and to infer patterns of co-occurrence. One year after the hurricane there was a loss of links between plants and fungi. Increased network modularity and connectivity were observed after two years. We also found that disturbance changed arbuscular mycorrhizal fungal network structure more strongly than ectomycorrhizal fungal networks. Fungal guilds changed their putative interspecific interactions, from mutual exclusion in the first year to a significant increase in co-occurrence of plant pathogens, saprotrophs, and endophytes in the second year. Our results suggest that in the short term, rhizospheric interactions can be resilient to hurricanes, but fungal guilds may have divergent responses.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"70 ","pages":"Article 101354"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000254/pdfft?md5=5a3561efb1e7e07eceaad63bb28588bd&pid=1-s2.0-S1754504824000254-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of hurricane disturbance on mycorrhizal co-occurrence networks: Resilience and community dynamics in the Neotropics\",\"authors\":\"Julieta Alvarez-Manjarrez ,&nbsp;Mohammad Bahram ,&nbsp;Sergei Põlme ,&nbsp;Roberto Garibay-Orijel\",\"doi\":\"10.1016/j.funeco.2024.101354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extreme climatic events and related disturbances such as hurricanes are increasingly altering forest ecosystems. How these events impact forest fungal communities is poorly characterized. We examined the effect of a hurricane on mycorrhizal community structure and potential interspecific fungal interactions, inferred from OTU co-occurrences. We characterized the root fungal communities of dual-mycorrhizal plants from nine plots during two consecutive years after a category four hurricane impacted the coastal Mexican Pacific tropical forest in Jalisco. Presence-abundance matrices were used to calculate properties of mycorrhizal networks including nestedness and modularity, and to infer patterns of co-occurrence. One year after the hurricane there was a loss of links between plants and fungi. Increased network modularity and connectivity were observed after two years. We also found that disturbance changed arbuscular mycorrhizal fungal network structure more strongly than ectomycorrhizal fungal networks. Fungal guilds changed their putative interspecific interactions, from mutual exclusion in the first year to a significant increase in co-occurrence of plant pathogens, saprotrophs, and endophytes in the second year. Our results suggest that in the short term, rhizospheric interactions can be resilient to hurricanes, but fungal guilds may have divergent responses.</p></div>\",\"PeriodicalId\":55136,\"journal\":{\"name\":\"Fungal Ecology\",\"volume\":\"70 \",\"pages\":\"Article 101354\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1754504824000254/pdfft?md5=5a3561efb1e7e07eceaad63bb28588bd&pid=1-s2.0-S1754504824000254-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1754504824000254\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504824000254","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

极端气候事件和飓风等相关干扰正在日益改变森林生态系统。这些事件如何影响森林真菌群落的特征还很不清楚。我们研究了飓风对菌根群落结构和潜在的种间真菌相互作用的影响,这些影响是通过 OTU 共现推断出来的。在墨西哥哈利斯科州太平洋沿岸热带森林遭受四级飓风袭击后,我们连续两年对九个地块的双菌根植物根部真菌群落进行了描述。利用存在-丰度矩阵计算菌根网络的特性,包括嵌套性和模块性,并推断共生模式。飓风过后一年,植物与真菌之间的联系有所减少。两年后,我们观察到网络的模块化程度和连接性有所提高。我们还发现,与外生菌根真菌网络相比,干扰对丛枝菌根真菌网络结构的改变更大。真菌行会改变了其假定的种间相互作用,从第一年的相互排斥到第二年植物病原体、嗜渍菌和内生菌的共生显著增加。我们的研究结果表明,在短期内,根瘤菌圈的相互作用可以抵御飓风,但真菌界可能会有不同的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of hurricane disturbance on mycorrhizal co-occurrence networks: Resilience and community dynamics in the Neotropics

Extreme climatic events and related disturbances such as hurricanes are increasingly altering forest ecosystems. How these events impact forest fungal communities is poorly characterized. We examined the effect of a hurricane on mycorrhizal community structure and potential interspecific fungal interactions, inferred from OTU co-occurrences. We characterized the root fungal communities of dual-mycorrhizal plants from nine plots during two consecutive years after a category four hurricane impacted the coastal Mexican Pacific tropical forest in Jalisco. Presence-abundance matrices were used to calculate properties of mycorrhizal networks including nestedness and modularity, and to infer patterns of co-occurrence. One year after the hurricane there was a loss of links between plants and fungi. Increased network modularity and connectivity were observed after two years. We also found that disturbance changed arbuscular mycorrhizal fungal network structure more strongly than ectomycorrhizal fungal networks. Fungal guilds changed their putative interspecific interactions, from mutual exclusion in the first year to a significant increase in co-occurrence of plant pathogens, saprotrophs, and endophytes in the second year. Our results suggest that in the short term, rhizospheric interactions can be resilient to hurricanes, but fungal guilds may have divergent responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信