Sidsel Ettrup Clemmensen , Michael Scott Cowled , Kresten Jon Korup Kromphardt , Jens Christian Frisvad , Thomas Ostenfeld Larsen , Rasmus John Normand Frandsen
{"title":"The role and fate of patulin in apple-associated fungal-fungal interactions","authors":"Sidsel Ettrup Clemmensen , Michael Scott Cowled , Kresten Jon Korup Kromphardt , Jens Christian Frisvad , Thomas Ostenfeld Larsen , Rasmus John Normand Frandsen","doi":"10.1016/j.funeco.2024.101341","DOIUrl":null,"url":null,"abstract":"<div><p>Fungal secondary metabolites (SMs) have attracted significant attention due to their pharmaceutical applications and negative impact as food contaminants. However, less attention has been paid to understanding the ecological role of SMs for the producer and their natural microbial community. To investigate this, we performed co-cultures of SM deficient mutant strains and wild type fungi isolated from mouldy windfall apples. The competitiveness of <em>Penicillium expansum</em> mutant strains was tested in co-cultures with <em>Monilinia fructigena</em> on apple puree agar. Remarkably, the absence of patulin production in <em>P. expansum</em> lead to a loss of antagonism against <em>M. fructigena</em>, revealing a nuanced ecological role that extends beyond the involvement of patulin in host pathogenicity. Furthermore, chemical analysis revealed biotransformation of patulin by <em>M. fructigena</em>, pointing to a more complex interplay mediated by SMs for fungal species inhabiting the same ecosystem.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"69 ","pages":"Article 101341"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000126/pdfft?md5=3ba4aa5474da7645357664690678516d&pid=1-s2.0-S1754504824000126-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504824000126","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal secondary metabolites (SMs) have attracted significant attention due to their pharmaceutical applications and negative impact as food contaminants. However, less attention has been paid to understanding the ecological role of SMs for the producer and their natural microbial community. To investigate this, we performed co-cultures of SM deficient mutant strains and wild type fungi isolated from mouldy windfall apples. The competitiveness of Penicillium expansum mutant strains was tested in co-cultures with Monilinia fructigena on apple puree agar. Remarkably, the absence of patulin production in P. expansum lead to a loss of antagonism against M. fructigena, revealing a nuanced ecological role that extends beyond the involvement of patulin in host pathogenicity. Furthermore, chemical analysis revealed biotransformation of patulin by M. fructigena, pointing to a more complex interplay mediated by SMs for fungal species inhabiting the same ecosystem.
期刊介绍:
Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.