Georgian Mathematical Journal最新文献

筛选
英文 中文
Some summation theorems and transformations for hypergeometric functions of Kampé de Fériet and Srivastava Kampé de Fériet 和 Srivastava 的超几何函数的一些求和定理和变换
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2114
Hari M. Srivastava, Bhawna Gupta, Mohammad Idris Qureshi, Mohd Shaid Baboo
{"title":"Some summation theorems and transformations for hypergeometric functions of Kampé de Fériet and Srivastava","authors":"Hari M. Srivastava, Bhawna Gupta, Mohammad Idris Qureshi, Mohd Shaid Baboo","doi":"10.1515/gmj-2023-2114","DOIUrl":"https://doi.org/10.1515/gmj-2023-2114","url":null,"abstract":"Owing to the remarkable success of the hypergeometric functions of one variable, the authors present a study of some families of hypergeometric functions of two or more variables. These functions include (for example) the Kampé de Fériet-type hypergeometric functions in two variables and Srivastava’s general hypergeometric function in three variables. The main aim of this paper is to provide several (presumably new) transformation and summation formulas for appropriately specified members of each of these families of hypergeometric functions in two and three variables. The methodology and techniques, which are used in this paper, are based upon the evaluation of some definite integrals involving logarithmic functions in terms of Riemann’s zeta function, Catalan’s constant, polylogarithm functions, and so on.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representations of a number in an arbitrary base with unbounded digits 以任意基数表示数位无限制的数
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2118
Artūras Dubickas
{"title":"Representations of a number in an arbitrary base with unbounded digits","authors":"ArtÅ«ras Dubickas","doi":"10.1515/gmj-2023-2118","DOIUrl":"https://doi.org/10.1515/gmj-2023-2118","url":null,"abstract":"In this paper, we prove that, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>β</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0137.png\" /> <jats:tex-math>{betain{mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0122.png\" /> <jats:tex-math>{alphain{mathbb{C}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most finitely many (possibly none at all) representations of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mi>β</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mi>β</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>+</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0119.png\" /> <jats:tex-math>{alpha=d_{n}beta^{n}+d_{n-1}beta^{n-1}+dots+d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with nonnegative integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>d</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0231.png\" /> <jats:tex-math>{n,d_{n},d_{n-1},dots,d_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if β is a transcendental number or an algebraic number which has a conjugate over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℚ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2118_eq_0255.png\" /> <jats:tex-math>{{mathbb{Q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (possibly β itself) in the real interval <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized derivations over amalgamated algebras along an ideal 沿理想的混杂代数上的广义推导
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2108
Brahim Boudine, Mohammed Zerra
{"title":"Generalized derivations over amalgamated algebras along an ideal","authors":"Brahim Boudine, Mohammed Zerra","doi":"10.1515/gmj-2023-2108","DOIUrl":"https://doi.org/10.1515/gmj-2023-2108","url":null,"abstract":"Let <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> be two associative rings, let <jats:italic>I</jats:italic> be an ideal of <jats:italic>B</jats:italic> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi>Hom</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2108_eq_0167.png\" /> <jats:tex-math>{finmathrm{Hom}(A,B)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give a complete description of generalized derivations over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:msup> <m:mo>⋈</m:mo> <m:mi>f</m:mi> </m:msup> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2108_eq_0101.png\" /> <jats:tex-math>{Abowtie^{f}I}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, when <jats:italic>A</jats:italic> is prime or semi-prime, we give several identities on generalized derivations which provide the commutativity of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:msup> <m:mo>⋈</m:mo> <m:mi>f</m:mi> </m:msup> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2108_eq_0101.png\" /> <jats:tex-math>{Abowtie^{f}I}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates for the commutators of Riesz transforms related to Schrödinger-type operators 与薛定谔型算子有关的里兹变换换元的估计值
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2106
Yanhui Wang, Kang Wang
{"title":"Estimates for the commutators of Riesz transforms related to Schrödinger-type operators","authors":"Yanhui Wang, Kang Wang","doi":"10.1515/gmj-2023-2106","DOIUrl":"https://doi.org/10.1515/gmj-2023-2106","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mi>V</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0396.png\" /> <jats:tex-math>{mathcal{L}_{2}=(-Delta)^{2}+V^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Schrödinger-type operator on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0389.png\" /> <jats:tex-math>{mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>5</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0468.png\" /> <jats:tex-math>{ngeq 5}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mn>1</m:mn> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0297.png\" /> <jats:tex-math>{H^{1}_{mathcal{L}_{2}}(mathbb{R}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the Hardy space related to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">ℒ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0397.png\" /> <jats:tex-math>{mathcal{L}_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>BMO</m:mi> <m:mi>θ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2106_eq_0406.png\" /> <jats:tex-math>{mathrm{BMO}_{theta}(rho)}</jats:tex-math> ","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Floquet theory and stability for a class of first order differential equations with delays 有延迟的一类一阶微分方程的 Floquet 理论和稳定性
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2119
Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn
{"title":"Floquet theory and stability for a class of first order differential equations with delays","authors":"Alexander Domoshnitsky, Elnatan Berenson, Shai Levi, Elena Litsyn","doi":"10.1515/gmj-2023-2119","DOIUrl":"https://doi.org/10.1515/gmj-2023-2119","url":null,"abstract":"A version of the Floquet theory for first order delay differential equations is proposed. Formula of solutions representation is obtained. On this basis, the stability of first order delay differential equations is studied. An analogue of the classical integral Lyapunov–Zhukovskii test of stability is proved. New, in comparison with all known, tests of the exponential stability are obtained on the basis of the Floquet theory. A possibility to achieve the exponential stability is connected with oscillation of solutions.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Essential norm of Riemann–Stieltjes operator on weighted Bergman spaces with doubling weights 带加倍权重的加权伯格曼空间上黎曼-斯蒂尔特杰斯算子的基本规范
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2110
Lian Hu, Songxiao Li, Rong Yang
{"title":"Essential norm of Riemann–Stieltjes operator on weighted Bergman spaces with doubling weights","authors":"Lian Hu, Songxiao Li, Rong Yang","doi":"10.1515/gmj-2023-2110","DOIUrl":"https://doi.org/10.1515/gmj-2023-2110","url":null,"abstract":"Let ω be a doubling weight and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2110_eq_0161.png\" /> <jats:tex-math>{0&lt;pleq q&lt;infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The essential norm of Riemann–Stieltjes operator <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mi>g</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2110_eq_0210.png\" /> <jats:tex-math>{T_{g}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> from the weighted Bergman space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>A</m:mi> <m:mi>ω</m:mi> <m:mi>p</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2110_eq_0172.png\" /> <jats:tex-math>{A^{p}_{omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>A</m:mi> <m:mi>ω</m:mi> <m:mi>q</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2110_eq_0173.png\" /> <jats:tex-math>{A^{q}_{omega}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> was investigated in the unit ball of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℂ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2110_eq_0250.png\" /> <jats:tex-math>{mathbb{C}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical radii of operator matrices in terms of certain complex combinations of operators 算子矩阵的数值半径与算子的某些复数组合有关
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2112
Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh
{"title":"Numerical radii of operator matrices in terms of certain complex combinations of operators","authors":"Cristian Conde, Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh","doi":"10.1515/gmj-2023-2112","DOIUrl":"https://doi.org/10.1515/gmj-2023-2112","url":null,"abstract":"Operator matrices have played a significant role in the study of properties of the numerical radii of Hilbert space operators. This paper presents several new sharp upper bounds for the numerical radii of operator matrices in terms of certain complex combinations. The obtained results reveal many interesting properties of the numerical radius.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the comparison of translation invariant convex differentiation bases 关于平移不变凸微分基的比较
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2070
Irakli Japaridze
{"title":"On the comparison of translation invariant convex differentiation bases","authors":"Irakli Japaridze","doi":"10.1515/gmj-2023-2070","DOIUrl":"https://doi.org/10.1515/gmj-2023-2070","url":null,"abstract":"It is known that if <jats:italic>B</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>B</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2070_eq_0070.png\" /> <jats:tex-math>{B^{prime}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are translation invariant convex density differentiation bases and the maximal operators associated to them locally majorize each other, then <jats:italic>B</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>B</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2070_eq_0070.png\" /> <jats:tex-math>{B^{prime}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> differentiate the integrals of the same class of non-negative functions. We show that under the same conditions it is not possible to assert more about similarity of the differential properties of <jats:italic>B</jats:italic> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>B</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2070_eq_0070.png\" /> <jats:tex-math>{B^{prime}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in view of their positive equivalence.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on maximal estimate for an oscillatory operator 关于振荡算子最大估计值的说明
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2115
Jiawei Shen, Yali Pan
{"title":"A note on maximal estimate for an oscillatory operator","authors":"Jiawei Shen, Yali Pan","doi":"10.1515/gmj-2023-2115","DOIUrl":"https://doi.org/10.1515/gmj-2023-2115","url":null,"abstract":"We study the local maximal oscillatory integral operator <jats:disp-formula-group> <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∗</m:mo> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>f</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:munder> <m:mo movablelimits=\"false\">sup</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>t</m:mi> <m:mo>&lt;</m:mo> <m:mn>1</m:mn> </m:mrow> </m:munder> <m:mo>⁡</m:mo> <m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">|</m:mo> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> </m:mstyle> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mfrac> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>⁢</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>⁢</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>β</m:mi> </m:msup> </m:mfrac> </m:mstyle> <m:mo>⁢</m:mo> <m:mi mathvariant=\"normal\">Ψ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>⁢</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mover accent=\"true\"> <m:mi>f</m:mi> <m:mo>^</m:mo> </m:mover> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>π</m:mi> <m:mo>⁢</m:mo> <m:mi>i</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>ξ</m:mi> </m:mrow> </m:mrow> </m:mrow> <m:mo maxsize=\"260%\" minsize=\"260%\">|</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2115_eq_0041.png\" /> <jats:tex-math>displaystyle T_{alpha,beta}^{ast}(f)(x)=sup_{0&lt;t&lt;1}Bigg{|}int_{mathbb{% R}^{n}}frac{e^{i|txi|^{alpha}}}{|txi|^{beta}}Psi(|txi|)widehat{f}(xi)% e^{2pi ilangle x,xirangle},dxiBigg{|},</jats:tex-math> </jats:alternatives> </jats:disp-formula> </jats:disp-formula-group> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/M","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On statistical convergence of order α in partial metric spaces 论部分度量空间中阶 α 的统计收敛性
IF 0.7 4区 数学
Georgian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1515/gmj-2023-2116
Erdal Bayram, Çiğdem A. Bektaş, Yavuz Altın
{"title":"On statistical convergence of order α in partial metric spaces","authors":"Erdal Bayram, Çiğdem A. Bektaş, Yavuz Altın","doi":"10.1515/gmj-2023-2116","DOIUrl":"https://doi.org/10.1515/gmj-2023-2116","url":null,"abstract":"The present study introduces the notions of statistical convergence of order α and strong <jats:italic>p</jats:italic>-Cesàro summability of order α in partial metric spaces. Also, we examine the inclusion relations between these concepts. In addition, we introduce the notion of λ-statistical convergence of order α in partial metric spaces while providing relations linked to these sequence spaces.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信