BV capacity and perimeter in abstract Wiener spaces and applications

IF 0.8 4区 数学 Q2 MATHEMATICS
Guiyang Liu, He Wang, Yu Liu
{"title":"BV capacity and perimeter in abstract Wiener spaces and applications","authors":"Guiyang Liu, He Wang, Yu Liu","doi":"10.1515/gmj-2023-2081","DOIUrl":null,"url":null,"abstract":"This paper is devoted to introducing and investigating the bounded variation capacity and the perimeter in the abstract Wiener space <jats:italic>X</jats:italic>, thereby discovering some related inequalities. Functions of bounded variation in an abstract Wiener space <jats:italic>X</jats:italic> have been studied by many scholars. As the continuation of this research, we define the corresponding BV capacity <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>cap</m:mi> <m:mi>H</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2081_eq_0438.png\" /> <jats:tex-math>{\\operatorname{cap}_{H}(\\,\\cdot\\,)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (now called abstract Wiener BV capacity) and investigate its properties. We also investigate some properties of sets of finite γ-perimeter, with γ being a Gaussian measure. Subsequently, the isocapacitary inequality associated with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>cap</m:mi> <m:mi>H</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2081_eq_0438.png\" /> <jats:tex-math>{\\operatorname{cap}_{H}(\\,\\cdot\\,)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is presented and we are able to show that it is equivalent to the Gaussian isoperimetric inequality. Finally, we prove that every set of finite γ-perimeter in <jats:italic>X</jats:italic> has mean curvature in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>γ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2081_eq_0347.png\" /> <jats:tex-math>{L^{1}(X,\\gamma)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to introducing and investigating the bounded variation capacity and the perimeter in the abstract Wiener space X, thereby discovering some related inequalities. Functions of bounded variation in an abstract Wiener space X have been studied by many scholars. As the continuation of this research, we define the corresponding BV capacity cap H ( ) {\operatorname{cap}_{H}(\,\cdot\,)} (now called abstract Wiener BV capacity) and investigate its properties. We also investigate some properties of sets of finite γ-perimeter, with γ being a Gaussian measure. Subsequently, the isocapacitary inequality associated with cap H ( ) {\operatorname{cap}_{H}(\,\cdot\,)} is presented and we are able to show that it is equivalent to the Gaussian isoperimetric inequality. Finally, we prove that every set of finite γ-perimeter in X has mean curvature in L 1 ( X , γ ) {L^{1}(X,\gamma)} .
抽象维纳空间中的BV容量和周长及其应用
本文引入并研究了抽象Wiener空间X中的有界变容和周长,从而发现了一些相关的不等式。抽象维纳空间X中的有界变分函数已被许多学者研究。作为本研究的继续,我们定义了相应的BV容量上限H(⋅){\operatorname{cap}_{H}(\,\cdot\,)}(现称为抽象Wiener BV容量)并研究了其性质。我们还研究了有限γ周长集的一些性质,其中γ是高斯测度。随后,给出了与cap H(⋅){\operatorname{cap}_{H}(\,\cdot\,)}相关的等容不等式,并证明了它等价于高斯等容不等式。最后,我们证明了X上的每一个有限γ周长集合在L 1¹(X, γ) {L^{1}(X,\gamma)}中具有平均曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信