The Dirichlet problem in an infinite layer for a system of differential equations with shifts

IF 0.8 4区 数学 Q2 MATHEMATICS
Zinovii Nytrebych, Roman Shevchuk, Ivan Savka
{"title":"The Dirichlet problem in an infinite layer for a system of differential equations with shifts","authors":"Zinovii Nytrebych, Roman Shevchuk, Ivan Savka","doi":"10.1515/gmj-2023-2104","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem with data on the boundary of the infinite layer <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>x</m:mi> <m:mo rspace=\"0.278em\" stretchy=\"false\">)</m:mo> </m:mrow> <m:mo rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>h</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo rspace=\"0.337em\">,</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mi>s</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo rspace=\"1.167em\">,</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"0.337em\">,</m:mo> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2104_eq_9999.png\" /> <jats:tex-math>\\{(t,x):t\\in(0,h),\\,x\\in\\mathbb{R}^{s}\\},\\quad h&gt;0,\\,s\\in\\mathbb{N},</jats:tex-math> </jats:alternatives> </jats:disp-formula> for the system of two differential equations of the second order in the time variable 𝑡 with shifts in the spatial variables <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>s</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2104_ineq_0001.png\" /> <jats:tex-math>x_{1},x_{2},\\ldots,x_{s}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We propose a differential-symbol method of constructing a solution of the problem and identify a class of vector functions in which the obtained solution is unique. The method of solving the Dirichlet problem in the layer is illustrated by examples.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"14 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the problem with data on the boundary of the infinite layer { ( t , x ) : t ( 0 , h ) , x R s } , h > 0 , s N , \{(t,x):t\in(0,h),\,x\in\mathbb{R}^{s}\},\quad h>0,\,s\in\mathbb{N}, for the system of two differential equations of the second order in the time variable 𝑡 with shifts in the spatial variables x 1 , x 2 , , x s x_{1},x_{2},\ldots,x_{s} . We propose a differential-symbol method of constructing a solution of the problem and identify a class of vector functions in which the obtained solution is unique. The method of solving the Dirichlet problem in the layer is illustrated by examples.
有位移微分方程系统的无穷层中的德里赫特问题
在本文中,我们研究了无限层 { ( t , x ) : t∈ ( 0 , h ) , x∈ R s } 边界上的数据问题。 , h > 0 , s ∈ N , \{(t,x):t\in(0,h),\,x\in\mathbb{R}^{s}\},\quad h>0,\,s\in\mathbb{N}, 为时间变量 x 1 , x 2 , ... , x s x_{1},x_{2},\ldots,x_{s} 的二阶微分方程系统。我们提出了一种构建问题解的微分符号法,并确定了一类向量函数,在这类向量函数中,得到的解是唯一的。我们通过实例来说明层中 Dirichlet 问题的求解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信