{"title":"有位移微分方程系统的无穷层中的德里赫特问题","authors":"Zinovii Nytrebych, Roman Shevchuk, Ivan Savka","doi":"10.1515/gmj-2023-2104","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem with data on the boundary of the infinite layer <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>x</m:mi> <m:mo rspace=\"0.278em\" stretchy=\"false\">)</m:mo> </m:mrow> <m:mo rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>h</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo rspace=\"0.337em\">,</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mi>s</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mo rspace=\"1.167em\">,</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\"0.337em\">,</m:mo> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2104_eq_9999.png\" /> <jats:tex-math>\\{(t,x):t\\in(0,h),\\,x\\in\\mathbb{R}^{s}\\},\\quad h>0,\\,s\\in\\mathbb{N},</jats:tex-math> </jats:alternatives> </jats:disp-formula> for the system of two differential equations of the second order in the time variable 𝑡 with shifts in the spatial variables <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>s</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2104_ineq_0001.png\" /> <jats:tex-math>x_{1},x_{2},\\ldots,x_{s}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We propose a differential-symbol method of constructing a solution of the problem and identify a class of vector functions in which the obtained solution is unique. The method of solving the Dirichlet problem in the layer is illustrated by examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dirichlet problem in an infinite layer for a system of differential equations with shifts\",\"authors\":\"Zinovii Nytrebych, Roman Shevchuk, Ivan Savka\",\"doi\":\"10.1515/gmj-2023-2104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem with data on the boundary of the infinite layer <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>x</m:mi> <m:mo rspace=\\\"0.278em\\\" stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo rspace=\\\"0.278em\\\">:</m:mo> <m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>h</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo rspace=\\\"0.337em\\\">,</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> <m:mi>s</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> <m:mo rspace=\\\"1.167em\\\">,</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo rspace=\\\"0.337em\\\">,</m:mo> <m:mrow> <m:mi>s</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"double-struck\\\">N</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2104_eq_9999.png\\\" /> <jats:tex-math>\\\\{(t,x):t\\\\in(0,h),\\\\,x\\\\in\\\\mathbb{R}^{s}\\\\},\\\\quad h>0,\\\\,s\\\\in\\\\mathbb{N},</jats:tex-math> </jats:alternatives> </jats:disp-formula> for the system of two differential equations of the second order in the time variable 𝑡 with shifts in the spatial variables <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>s</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2104_ineq_0001.png\\\" /> <jats:tex-math>x_{1},x_{2},\\\\ldots,x_{s}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We propose a differential-symbol method of constructing a solution of the problem and identify a class of vector functions in which the obtained solution is unique. The method of solving the Dirichlet problem in the layer is illustrated by examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了无限层 { ( t , x ) : t∈ ( 0 , h ) , x∈ R s } 边界上的数据问题。 , h > 0 , s ∈ N , \{(t,x):t\in(0,h),\,x\in\mathbb{R}^{s}\},\quad h>0,\,s\in\mathbb{N}, 为时间变量 x 1 , x 2 , ... , x s x_{1},x_{2},\ldots,x_{s} 的二阶微分方程系统。我们提出了一种构建问题解的微分符号法,并确定了一类向量函数,在这类向量函数中,得到的解是唯一的。我们通过实例来说明层中 Dirichlet 问题的求解方法。
The Dirichlet problem in an infinite layer for a system of differential equations with shifts
In this paper, we study the problem with data on the boundary of the infinite layer {(t,x):t∈(0,h),x∈Rs},h>0,s∈N,\{(t,x):t\in(0,h),\,x\in\mathbb{R}^{s}\},\quad h>0,\,s\in\mathbb{N}, for the system of two differential equations of the second order in the time variable 𝑡 with shifts in the spatial variables x1,x2,…,xsx_{1},x_{2},\ldots,x_{s}. We propose a differential-symbol method of constructing a solution of the problem and identify a class of vector functions in which the obtained solution is unique. The method of solving the Dirichlet problem in the layer is illustrated by examples.