Concerning the Nakayama property of a module

Pub Date : 2023-12-12 DOI:10.1515/gmj-2023-2102
Somayeh Karimzadeh, Esmaeil Rostami, Somayeh Hadjirezaei
{"title":"Concerning the Nakayama property of a module","authors":"Somayeh Karimzadeh, Esmaeil Rostami, Somayeh Hadjirezaei","doi":"10.1515/gmj-2023-2102","DOIUrl":null,"url":null,"abstract":"In this paper, we thoroughly study the Nakayama property and some related concepts. Also, we describe multiplication modules that, among other things, satisfy the Nakayama property. Next, we show that a ring 𝑅 is a Max ring if and only if all modules that can be generated by a finite or countable set have the weak Nakayama property. We prove that a ring 𝑅 is a perfect ring if and only if every module that can be generated by a finite or countable set has the Nakayama property. Finally, we present some categorical results on the aforementioned properties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we thoroughly study the Nakayama property and some related concepts. Also, we describe multiplication modules that, among other things, satisfy the Nakayama property. Next, we show that a ring 𝑅 is a Max ring if and only if all modules that can be generated by a finite or countable set have the weak Nakayama property. We prove that a ring 𝑅 is a perfect ring if and only if every module that can be generated by a finite or countable set has the Nakayama property. Finally, we present some categorical results on the aforementioned properties.
分享
查看原文
关于模块的中山特性
在本文中,我们深入研究了中山性质和一些相关概念。此外,我们还描述了满足中山性质的乘法模块。接下来,我们证明,当且仅当所有可由有限集或可数集生成的模块都具有弱中山性质时,环𝑅 才是麦克斯环。我们证明,当且仅当每个可由有限集或可数集生成的模块都具有中山性质时,环𝑅 是完美环。最后,我们给出了上述性质的一些分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信