Signless Laplacian spectrum of the cozero-divisor graph of the commutative ring ℤ𝑛

Pub Date : 2023-12-08 DOI:10.1515/gmj-2023-2098
Mohd Rashid, Muzibur Rahman Mozumder, Mohd Anwar
{"title":"Signless Laplacian spectrum of the cozero-divisor graph of the commutative ring ℤ𝑛","authors":"Mohd Rashid, Muzibur Rahman Mozumder, Mohd Anwar","doi":"10.1515/gmj-2023-2098","DOIUrl":null,"url":null,"abstract":"Let 𝑅 be a commutative ring with identity <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0001.png\" /> <jats:tex-math>1\\neq 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0002.png\" /> <jats:tex-math>Z(R)^{\\prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the set of all non-zero and non-unit elements of ring 𝑅. Further, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0003.png\" /> <jats:tex-math>\\Gamma^{\\prime}(R)</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the cozero-divisor graph of 𝑅, is an undirected graph with vertex set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0002.png\" /> <jats:tex-math>Z(R)^{\\prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>∉</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>⁢</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0005.png\" /> <jats:tex-math>w\\notin zR</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>z</m:mi> <m:mo>∉</m:mo> <m:mrow> <m:mi>w</m:mi> <m:mo>⁢</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0006.png\" /> <jats:tex-math>z\\notin wR</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if two distinct vertices 𝑤 and 𝑧 are adjacent, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo>⁢</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0007.png\" /> <jats:tex-math>qR</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the ideal generated by the element 𝑞 in 𝑅. In this paper, we find the signless Laplacian eigenvalues of the graphs <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0008.png\" /> <jats:tex-math>\\Gamma^{\\prime}(\\mathbb{Z}_{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mi>p</m:mi> <m:mn>1</m:mn> <m:mi>N</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0009.png\" /> <jats:tex-math>n=p_{1}^{N}p_{2}p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>p</m:mi> <m:mn>1</m:mn> <m:mi>N</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:msubsup> <m:mi>p</m:mi> <m:mn>2</m:mn> <m:mi>M</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0010.png\" /> <jats:tex-math>p_{1}^{N}p_{2}^{M}p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>p</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0011.png\" /> <jats:tex-math>p_{1},p_{2},p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are distinct primes and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>,</m:mo> <m:mi>M</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0012.png\" /> <jats:tex-math>N,M</jats:tex-math> </jats:alternatives> </jats:inline-formula> are positive integers. We also show that the cozero-divisor graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mrow> <m:msub> <m:mi>p</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0013.png\" /> <jats:tex-math>\\Gamma^{\\prime}(\\mathbb{Z}_{p_{1}p_{2}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a signless Laplacian integral.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝑅 be a commutative ring with identity 1 0 1\neq 0 and let Z ( R ) Z(R)^{\prime} be the set of all non-zero and non-unit elements of ring 𝑅. Further, Γ ( R ) \Gamma^{\prime}(R) denotes the cozero-divisor graph of 𝑅, is an undirected graph with vertex set Z ( R ) Z(R)^{\prime} , and w z R w\notin zR and z w R z\notin wR if and only if two distinct vertices 𝑤 and 𝑧 are adjacent, where q R qR is the ideal generated by the element 𝑞 in 𝑅. In this paper, we find the signless Laplacian eigenvalues of the graphs Γ ( Z n ) \Gamma^{\prime}(\mathbb{Z}_{n}) for n = p 1 N p 2 p 3 n=p_{1}^{N}p_{2}p_{3} and p 1 N p 2 M p 3 p_{1}^{N}p_{2}^{M}p_{3} , where p 1 , p 2 , p 3 p_{1},p_{2},p_{3} are distinct primes and N , M N,M are positive integers. We also show that the cozero-divisor graph Γ ( Z p 1 p 2 ) \Gamma^{\prime}(\mathbb{Z}_{p_{1}p_{2}}) is a signless Laplacian integral.
分享
查看原文
交换环ℤ𝑛的零因子图的无符号拉普拉斯谱
让𝑅 是一个交换环,其特征为 1≠0 1\neq 0,让 Z ( R ) ′ Z(R)^{\prime} 是环𝑅 中所有非零非单位元素的集合。此外,Γ ′ ( R ) \Gamma^\{prime}(R) 表示𝑅的零因子图,是一个无向图,其顶点集为 Z ( R ) ′ Z(R)^{\prime} 、当且仅当两个不同的顶点 𝑤 和 𝑧 相邻时,w∉ z R w (notin zR)和 z ∉ w R z (notin wR),其中 q R qR 是元素 △ 在𝑅 中生成的理想。在本文中,我们将找到 n = p 1 N p 2 p 3 n=p_{1}^{N}p_{2}p_{3} 和 p 1 N p 2 M p 3 p_{1}^{N}p_{2}^{M}p_{3} 时,图 Γ ′ ( Z n ) 的无符号拉普拉奇特征值(Gamma^\{prime}(\mathbb{Z}_{n})。 其中 p 1 , p 2 , p 3 p_{1},p_{2},p_{3} 是不同的素数,N , M N,M 是正整数。我们还证明了 cozero-divisor graph Γ ′ ( Z p 1 p 2 ) \Gamma^\{prime}(\mathbb{Z}_{p_{1}p_{2}}) 是一个无符号的拉普拉斯积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信