Signless Laplacian spectrum of the cozero-divisor graph of the commutative ring ℤ𝑛

IF 0.8 4区 数学 Q2 MATHEMATICS
Mohd Rashid, Muzibur Rahman Mozumder, Mohd Anwar
{"title":"Signless Laplacian spectrum of the cozero-divisor graph of the commutative ring ℤ𝑛","authors":"Mohd Rashid, Muzibur Rahman Mozumder, Mohd Anwar","doi":"10.1515/gmj-2023-2098","DOIUrl":null,"url":null,"abstract":"Let 𝑅 be a commutative ring with identity <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0001.png\" /> <jats:tex-math>1\\neq 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0002.png\" /> <jats:tex-math>Z(R)^{\\prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the set of all non-zero and non-unit elements of ring 𝑅. Further, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0003.png\" /> <jats:tex-math>\\Gamma^{\\prime}(R)</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the cozero-divisor graph of 𝑅, is an undirected graph with vertex set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0002.png\" /> <jats:tex-math>Z(R)^{\\prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>∉</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>⁢</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0005.png\" /> <jats:tex-math>w\\notin zR</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>z</m:mi> <m:mo>∉</m:mo> <m:mrow> <m:mi>w</m:mi> <m:mo>⁢</m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0006.png\" /> <jats:tex-math>z\\notin wR</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if two distinct vertices 𝑤 and 𝑧 are adjacent, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo>⁢</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0007.png\" /> <jats:tex-math>qR</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the ideal generated by the element 𝑞 in 𝑅. In this paper, we find the signless Laplacian eigenvalues of the graphs <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0008.png\" /> <jats:tex-math>\\Gamma^{\\prime}(\\mathbb{Z}_{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mi>p</m:mi> <m:mn>1</m:mn> <m:mi>N</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0009.png\" /> <jats:tex-math>n=p_{1}^{N}p_{2}p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>p</m:mi> <m:mn>1</m:mn> <m:mi>N</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:msubsup> <m:mi>p</m:mi> <m:mn>2</m:mn> <m:mi>M</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0010.png\" /> <jats:tex-math>p_{1}^{N}p_{2}^{M}p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>p</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0011.png\" /> <jats:tex-math>p_{1},p_{2},p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are distinct primes and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>,</m:mo> <m:mi>M</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0012.png\" /> <jats:tex-math>N,M</jats:tex-math> </jats:alternatives> </jats:inline-formula> are positive integers. We also show that the cozero-divisor graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mrow> <m:msub> <m:mi>p</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0013.png\" /> <jats:tex-math>\\Gamma^{\\prime}(\\mathbb{Z}_{p_{1}p_{2}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a signless Laplacian integral.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝑅 be a commutative ring with identity 1 0 1\neq 0 and let Z ( R ) Z(R)^{\prime} be the set of all non-zero and non-unit elements of ring 𝑅. Further, Γ ( R ) \Gamma^{\prime}(R) denotes the cozero-divisor graph of 𝑅, is an undirected graph with vertex set Z ( R ) Z(R)^{\prime} , and w z R w\notin zR and z w R z\notin wR if and only if two distinct vertices 𝑤 and 𝑧 are adjacent, where q R qR is the ideal generated by the element 𝑞 in 𝑅. In this paper, we find the signless Laplacian eigenvalues of the graphs Γ ( Z n ) \Gamma^{\prime}(\mathbb{Z}_{n}) for n = p 1 N p 2 p 3 n=p_{1}^{N}p_{2}p_{3} and p 1 N p 2 M p 3 p_{1}^{N}p_{2}^{M}p_{3} , where p 1 , p 2 , p 3 p_{1},p_{2},p_{3} are distinct primes and N , M N,M are positive integers. We also show that the cozero-divisor graph Γ ( Z p 1 p 2 ) \Gamma^{\prime}(\mathbb{Z}_{p_{1}p_{2}}) is a signless Laplacian integral.
交换环ℤ𝑛的零因子图的无符号拉普拉斯谱
让𝑅 是一个交换环,其特征为 1≠0 1\neq 0,让 Z ( R ) ′ Z(R)^{\prime} 是环𝑅 中所有非零非单位元素的集合。此外,Γ ′ ( R ) \Gamma^\{prime}(R) 表示𝑅的零因子图,是一个无向图,其顶点集为 Z ( R ) ′ Z(R)^{\prime} 、当且仅当两个不同的顶点 𝑤 和 𝑧 相邻时,w∉ z R w (notin zR)和 z ∉ w R z (notin wR),其中 q R qR 是元素 △ 在𝑅 中生成的理想。在本文中,我们将找到 n = p 1 N p 2 p 3 n=p_{1}^{N}p_{2}p_{3} 和 p 1 N p 2 M p 3 p_{1}^{N}p_{2}^{M}p_{3} 时,图 Γ ′ ( Z n ) 的无符号拉普拉奇特征值(Gamma^\{prime}(\mathbb{Z}_{n})。 其中 p 1 , p 2 , p 3 p_{1},p_{2},p_{3} 是不同的素数,N , M N,M 是正整数。我们还证明了 cozero-divisor graph Γ ′ ( Z p 1 p 2 ) \Gamma^\{prime}(\mathbb{Z}_{p_{1}p_{2}}) 是一个无符号的拉普拉斯积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信