{"title":"Signless Laplacian spectrum of the cozero-divisor graph of the commutative ring ℤ𝑛","authors":"Mohd Rashid, Muzibur Rahman Mozumder, Mohd Anwar","doi":"10.1515/gmj-2023-2098","DOIUrl":null,"url":null,"abstract":"Let 𝑅 be a commutative ring with identity <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0001.png\" /> <jats:tex-math>1\\neq 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0002.png\" /> <jats:tex-math>Z(R)^{\\prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the set of all non-zero and non-unit elements of ring 𝑅. Further, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0003.png\" /> <jats:tex-math>\\Gamma^{\\prime}(R)</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the cozero-divisor graph of 𝑅, is an undirected graph with vertex set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>R</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>′</m:mo> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0002.png\" /> <jats:tex-math>Z(R)^{\\prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>∉</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo></m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0005.png\" /> <jats:tex-math>w\\notin zR</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>z</m:mi> <m:mo>∉</m:mo> <m:mrow> <m:mi>w</m:mi> <m:mo></m:mo> <m:mi>R</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0006.png\" /> <jats:tex-math>z\\notin wR</jats:tex-math> </jats:alternatives> </jats:inline-formula> if and only if two distinct vertices 𝑤 and 𝑧 are adjacent, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo></m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0007.png\" /> <jats:tex-math>qR</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the ideal generated by the element 𝑞 in 𝑅. In this paper, we find the signless Laplacian eigenvalues of the graphs <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0008.png\" /> <jats:tex-math>\\Gamma^{\\prime}(\\mathbb{Z}_{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msubsup> <m:mi>p</m:mi> <m:mn>1</m:mn> <m:mi>N</m:mi> </m:msubsup> <m:mo></m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo></m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0009.png\" /> <jats:tex-math>n=p_{1}^{N}p_{2}p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>p</m:mi> <m:mn>1</m:mn> <m:mi>N</m:mi> </m:msubsup> <m:mo></m:mo> <m:msubsup> <m:mi>p</m:mi> <m:mn>2</m:mn> <m:mi>M</m:mi> </m:msubsup> <m:mo></m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0010.png\" /> <jats:tex-math>p_{1}^{N}p_{2}^{M}p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>p</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0011.png\" /> <jats:tex-math>p_{1},p_{2},p_{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are distinct primes and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>,</m:mo> <m:mi>M</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0012.png\" /> <jats:tex-math>N,M</jats:tex-math> </jats:alternatives> </jats:inline-formula> are positive integers. We also show that the cozero-divisor graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mrow> <m:msub> <m:mi>p</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:msub> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2098_ineq_0013.png\" /> <jats:tex-math>\\Gamma^{\\prime}(\\mathbb{Z}_{p_{1}p_{2}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a signless Laplacian integral.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let 𝑅 be a commutative ring with identity 1≠01\neq 0 and let Z(R)′Z(R)^{\prime} be the set of all non-zero and non-unit elements of ring 𝑅. Further, Γ′(R)\Gamma^{\prime}(R) denotes the cozero-divisor graph of 𝑅, is an undirected graph with vertex set Z(R)′Z(R)^{\prime}, and w∉zRw\notin zR and z∉wRz\notin wR if and only if two distinct vertices 𝑤 and 𝑧 are adjacent, where qRqR is the ideal generated by the element 𝑞 in 𝑅. In this paper, we find the signless Laplacian eigenvalues of the graphs Γ′(Zn)\Gamma^{\prime}(\mathbb{Z}_{n}) for n=p1Np2p3n=p_{1}^{N}p_{2}p_{3} and p1Np2Mp3p_{1}^{N}p_{2}^{M}p_{3}, where p1,p2,p3p_{1},p_{2},p_{3} are distinct primes and N,MN,M are positive integers. We also show that the cozero-divisor graph Γ′(Zp1p2)\Gamma^{\prime}(\mathbb{Z}_{p_{1}p_{2}}) is a signless Laplacian integral.
让𝑅 是一个交换环,其特征为 1≠0 1\neq 0,让 Z ( R ) ′ Z(R)^{\prime} 是环𝑅 中所有非零非单位元素的集合。此外,Γ ′ ( R ) \Gamma^\{prime}(R) 表示𝑅的零因子图,是一个无向图,其顶点集为 Z ( R ) ′ Z(R)^{\prime} 、当且仅当两个不同的顶点 𝑤 和 𝑧 相邻时,w∉ z R w (notin zR)和 z ∉ w R z (notin wR),其中 q R qR 是元素 △ 在𝑅 中生成的理想。在本文中,我们将找到 n = p 1 N p 2 p 3 n=p_{1}^{N}p_{2}p_{3} 和 p 1 N p 2 M p 3 p_{1}^{N}p_{2}^{M}p_{3} 时,图 Γ ′ ( Z n ) 的无符号拉普拉奇特征值(Gamma^\{prime}(\mathbb{Z}_{n})。 其中 p 1 , p 2 , p 3 p_{1},p_{2},p_{3} 是不同的素数,N , M N,M 是正整数。我们还证明了 cozero-divisor graph Γ ′ ( Z p 1 p 2 ) \Gamma^\{prime}(\mathbb{Z}_{p_{1}p_{2}}) 是一个无符号的拉普拉斯积分。
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.