Invertebrate Systematics最新文献

筛选
英文 中文
Ant mimicry in Australian plant bugs: a new genus (Heteroptera: Miridae: Austromirini: Carenotus gen. nov.), eight new species, myrmecomorphic traits, host plants and distribution. 澳大利亚植物蝽的蚂蚁拟态:一个新属(异翅目: Miridae: Austromirini: Carenotus gen. nov.)、八个新种、拟态特征、寄主植物和分布。
IF 1.8 2区 生物学
Invertebrate Systematics Pub Date : 2024-08-01 DOI: 10.1071/IS23013
Arlee McMah, Gerasimos Cassis
{"title":"Ant mimicry in Australian plant bugs: a new genus (Heteroptera: Miridae: Austromirini: <i>Carenotus</i> gen. nov.), eight new species, myrmecomorphic traits, host plants and distribution.","authors":"Arlee McMah, Gerasimos Cassis","doi":"10.1071/IS23013","DOIUrl":"https://doi.org/10.1071/IS23013","url":null,"abstract":"<p><p>The Australian plant bug tribe Austromirini consists of ant-mimetic taxa which are poorly known, with no information of their phylogenetic relationships and ant-mimetic traits. In this study, we examined nearly 1000 ingroup specimens and developed a comprehensive morphological dataset comprising 37 characters, which was analysed both weighted and unweighted, using 'Tree analysis using New Technology' (TNT ) software. A single minimal length phylogenetic tree was found, comprising a monophyletic group of ant-mimetic taxa, that included Myrmecoroides rufescens , Myrmecoridea sp., Kirkaldyella spp. and eight species of a new genus, Carenotus gen. nov. The myrmecomorphic traits of Carenotus and allied ant-mimetic taxa are documented and analysed phylogenetically, in conjunction with genitalic characters. Carenotus is defined by the myrmecomorphic colour patterning of the abdominal venter, whereas the ingroup species relationships are supported by genitalic characters alone. Carenotus is described as new with eight included species as follows: C. arltunga sp. nov., C. louthensis sp. nov., C. luritja sp. nov., C. pullabooka sp. nov., C. scaevolaphilus sp. nov., C. schwartzi sp. nov., C. tanami sp. nov. and C. yuendumu sp. nov. Host plant associations are also documented, ranging from host plant specificity and genus-group preferences to host plant generalism. The distribution of Carenotus species is documented with reference to phytogeographic subregions, with all species being semi-arid and arid dwelling. The male and female genitalia of Kirkaldyella pilosa and K. rugosa are described and illustrated, for comparative and phylogenetic purposes. This research expands our knowledge on the plant bug tribe Austromirini and has broader implications for myrmecomorphic research in the suborder Heteroptera. ZooBank: urn:lsid:zoobank.org:pub:2FF9BE23-38A6-42B4-8488-74F216D8237F.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular phylogenetic position and description of a new genus and species of freshwater Chaetonotidae (Gastrotricha: Chaetonotida: Paucitubulatina), and the annotation of its mitochondrial genome. 淡水鳢科(Gastricha: Chaetonotida: Paucitubulatina)一个新属和新种的分子系统学定位和描述,以及其线粒体基因组的注释。
IF 1.8 2区 生物学
Invertebrate Systematics Pub Date : 2024-07-01 DOI: 10.1071/IS23059
Leandro Gammuto, Valentina Serra, Giulio Petroni, M Antonio Todaro
{"title":"Molecular phylogenetic position and description of a new genus and species of freshwater Chaetonotidae (Gastrotricha: Chaetonotida: Paucitubulatina), and the annotation of its mitochondrial genome.","authors":"Leandro Gammuto, Valentina Serra, Giulio Petroni, M Antonio Todaro","doi":"10.1071/IS23059","DOIUrl":"https://doi.org/10.1071/IS23059","url":null,"abstract":"<p><p>Chaetonotidae is the most diversified family of the entire phylum Gastrotricha; it comprises ~430 species distributed across 16 genera. The current classification, established mainly on morphological traits, has been challenged in recent years by phylogenetic studies, indicating that the cuticular ornamentations used to discriminate among species may be misleading when used to identify groupings, which has been the practice until now. Therefore, a consensus is developing toward implementing novel approaches to better define species identity and affiliation at a higher taxonomic ranking. Using an integrative morphological and molecular approach, including annotation of the mitogenome, we report on some freshwater gastrotrichs characterised by a mixture of two types of cuticular scales diagnostic of the genera Aspidiophorus and Heterolepidoderma . Our specimens' overall anatomical characteristics find no correspondence in the taxa of these two genera, calling for their affiliation to a new species. Phylogenetic analyses based on the sequence of the ribosomal RNA genes of 96 taxa consistently found the new species unrelated to Aspidiophorus or Heterolepidoderma but allied with Chaetonotus aff. subtilis, as a subset of a larger clade, including mostly planktonic species. Morphological uniqueness and position along the non-monophyletic Chaetonotidae branch advocate erecting a new genus to accommodate the current specimens; consequently, the name Litigonotus ghinii gen. nov., sp. nov. is proposed. The complete mitochondrial genome of the new taxon resulted in a single circular molecule 14,384 bp long, including 13 protein-coding genes, 17 tRNA genes and 2 rRNAs genes, showing a perfect synteny and collinearity with the only other gastrotrich mitogenome available, a possible hint of a high level of conservation in the mitochondria of Chaetonotidae. ZooBank: urn:lsid:zoobank.org:pub:9803F659-306F-4EC3-A73B-8C704069F24A.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taxonomic revision of two species in the genus Ptychorhynchus Simpson, 1900 (Bivalvia: Unionidae: Gonideinae), with description of a new species. Ptychorhynchus Simpson, 1900 (Bivalvia: Unionidae: Gonideinae) 属中两个物种的分类修订,并描述了一个新物种。
IF 1.8 2区 生物学
Invertebrate Systematics Pub Date : 2024-07-01 DOI: 10.1071/IS24014
Ruiwen Wu, Lili Liu, Liping Zhang, Arthur E Bogan, Gengyun Niu, Dandong Jin, Xiaoping Wu, Xiongjun Liu
{"title":"Taxonomic revision of two species in the genus <i>Ptychorhynchus</i> Simpson, 1900 (Bivalvia: Unionidae: Gonideinae), with description of a new species.","authors":"Ruiwen Wu, Lili Liu, Liping Zhang, Arthur E Bogan, Gengyun Niu, Dandong Jin, Xiaoping Wu, Xiongjun Liu","doi":"10.1071/IS24014","DOIUrl":"https://doi.org/10.1071/IS24014","url":null,"abstract":"<p><p>Accurate identification and precise classification of freshwater mussel species that are among the most threatened freshwater taxa in the world, play a crucial role in informing conservation and management efforts for these organisms. However, due to the variability in shell morphology, relying solely on shell characteristics for species taxonomy poses significant challenges, thereby impeding effective conservation planning and management. The freshwater mussel genus Ptychorhynchus Simpson, 1900 is one such group in need of study. We integrate molecular phylogeny, shell morphology and soft-body anatomy to examine the classification of Ptychorhynchus denserugata (Haas, 1910) and Ptychorhynchus resupinatus (von Martens, 1902). The COI barcoding data support the clustering of P. denserugata and Nodularia douglasiae within a single clade, and P. denserugata shares the diagnostic feature of the genus Nodularia , i.e. knobs or bumps on the inner mantle surface in the excurrent aperture. Therefore, by integrating molecular data and anatomical characteristics, we confirm that the nominal species P. denserugata syn. nov. is a new synonym for N. douglasiae . The multi-locus (COI + ND1 + 16S rRNA + 18S rRNA + 28S rRNA ) phylogeny and mitochondrial phylogenomics support the transfer of P. resupinatus from Ptychorhynchus to the newly elevated genus Cosmopseudodon stat. rev., as Cosmopseudodon resupinatus stat. rev. that is still considered the designated type species. We also describe a new species based on integrative taxonomy, i.e. Cosmopseudodon wenshanensis sp. nov. The comprehensive understanding of the taxonomy and diversity of the revised Cosmopseudodon species, and shell heteromorphism of N. douglasiae (=P. denserugata syn. nov.), will serve as a crucial foundation for further scientific assessment and conservation strategies pertaining to these taxa. ZooBank: urn:lsid:zoobank.org:pub:E48968B1-DF0F-42AD-8F31-B8C95F23CE57.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taxonomic reassessment of Scabies (Bivalvia: Unionidae) species in China based on multilocus and mitogenomic phylogenetic analyses 基于多聚焦和有丝分裂组系统发育分析的中国疥螨(双壳纲: 联合科)物种分类学重新评估
IF 2.2 2区 生物学
Invertebrate Systematics Pub Date : 2024-06-17 DOI: 10.1071/is24020
Yu-Ting Dai, Zhong-Guang Chen, Cheng-Lin Hu, Peng-Fei Ning, Shan Ouyang, Xiao-Chen Huang, Xiao-Ping Wu
{"title":"Taxonomic reassessment of Scabies (Bivalvia: Unionidae) species in China based on multilocus and mitogenomic phylogenetic analyses","authors":"Yu-Ting Dai, Zhong-Guang Chen, Cheng-Lin Hu, Peng-Fei Ning, Shan Ouyang, Xiao-Chen Huang, Xiao-Ping Wu","doi":"10.1071/is24020","DOIUrl":"https://doi.org/10.1071/is24020","url":null,"abstract":"<p>Effective species conservation necessitates the ability to accurately differentiate among species, a challenge compounded by taxonomic uncertainties in freshwater mussels due to substantial intraspecific variation and pronounced phenotypic plasticity in shell morphology. The taxonomic status and species validity of <i>Scabies longata</i> and <i>S. chinensis</i>, two species endemic in China, have been under continuous debate since establishment. The lack of essential molecular data required for a comprehensive systematic study has resulted in the unresolved taxonomic status of these two species. This study presents molecular data, including <i>COI</i> barcoding, <i>COI</i> + <i>28S</i> rRNA, and mitogenomic data combined with morphological characteristics to assess the validity of <i>S. longata</i> and <i>S. chinensis</i>. Both morphological and <i>COI</i> barcoding data support the conclusion that <i>S. longata</i> and <i>S. chinensis</i> are junior synonyms of <i>Nodularia douglasiae</i> and <i>N. nuxpersicae</i> respectively. Our findings suggest the absence of <i>Scabies</i> species in China. Mitochondrial phylogenetic analyses were used to further elucidate intrageneric relationships within the genus <i>Nodularia</i>, revealing the following relationships: (<i>N. breviconcha</i> (<i>Nodularia</i> sp. 1 (<i>N. douglasiae</i> (<i>N. nuxpersicae</i>, <i>N. nipponensis</i>)))). We underscore the significance of employing an integrated taxonomic approach for species identification, especially given the considerable morphological disparities between larvae and adult freshwater mussels. Proper morphological identification of adult specimens is essential for extracting meaningful taxonomic characters. Furthermore, our findings suggest a notable resemblance between the freshwater bivalve fauna in southern China and those east of the Mekong River.</p><p>ZooBank: urn:lsid:zoobank.org:pub:DA87D330-5E23-4F4B-8CC2-CBA3CD191BE8</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"60 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The South American genus Cnemalobus (Coleoptera: Carabidae: Cnemalobini): phylogeny and biogeographic analysis with the description of four new species from extra-Andean Patagonian mountains. 南美洲蚕蛾属(鞘翅目:蚕蛾科:蚕蛾属):系统发育和生物地理学分析,并描述了来自安第斯山外巴塔哥尼亚山区的四个新物种。
IF 1.8 2区 生物学
Invertebrate Systematics Pub Date : 2024-06-01 DOI: 10.1071/IS23044
Mariana Griotti, Melisa Olave, Paula Cornejo, Diego Miras, Sergio Roig-Juñent
{"title":"The South American genus <i>Cnemalobus</i> (Coleoptera: Carabidae: Cnemalobini): phylogeny and biogeographic analysis with the description of four new species from extra-Andean Patagonian mountains.","authors":"Mariana Griotti, Melisa Olave, Paula Cornejo, Diego Miras, Sergio Roig-Juñent","doi":"10.1071/IS23044","DOIUrl":"https://doi.org/10.1071/IS23044","url":null,"abstract":"<p><p>The carabid beetle Cnemalobus Guérin-Ménéville, 1838 inhabits high- and lowland grasslands of southern South America. The highest diversity is found in the Patagonian Steppe, where distribution patterns are associated with latitude and elevation. Northern Patagonia, a large volcanic region with a complex geoclimatic history, exhibits elevated grades of endemism. However, a great deal remains unknown regarding diversification and biogeographical patterns for most of the endemic groups. We describe new Cnemalobus species restricted to isolated volcanoes from these extra-Andean mountain systems. We assess the phylogenetic relationships by updating the phylogeny of the genus and conduct a Bayesian binary Markov chain-Monte Carlo (MCMC) analysis on the resulting phylogenetic tree to discuss the biogeographical distribution patterns. We also provide a taxonomic key to all currently known species of Cnemalobus from the Patagonian Steppe. Our phylogenetic analysis supports the monophyly of the new species Cnemalobus tromen sp. nov., Cnemalobus silviae sp. nov., Cnemalobus aucamahuida sp. nov. and Cnemalobus domuyo sp. nov. grouped with C. diamante and C. nevado , referred to as the 'Extra-Andean' mountain lineage. Biogeographical analysis recognises vicariant events as the most plausible explanation for the allopatric distributions of the new species. We hypothesise that these vicariant events could be related to climatic barriers that likely promoted speciation processes by generating geographical isolation in ancestral populations. Our findings contribute significantly to the biogeographical understanding of the Patagonian volcanic region, prompting new inquiries to unravel the speciation processes of the endemic biota in extra-Andean mountain systems. ZooBank: urn:lsid:zoobank.org:pub:6A7585E8-5006-45BC-A1A3-F874F18A6049.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Asian rock-dwelling antlions Gatzara Navás, 1915 and Nepsalus Navás, 1914 (Neuroptera: Myrmeleontidae): new advancements in systematics, biogeography and life history. 亚洲岩栖蚁后 Gatzara Navás, 1915 年和 Nepsalus Navás, 1914 年(Neuroptera: Myrmeleontidae):系统学、生物地理学和生活史方面的新进展。
IF 1.8 2区 生物学
Invertebrate Systematics Pub Date : 2024-06-01 DOI: 10.1071/IS24010
Yuchen Zheng, Yuezheng Tu, Zuqi Mai, Davide Badano, Xingyue Liu
{"title":"The Asian rock-dwelling antlions <i>Gatzara</i> Navás, 1915 and <i>Nepsalus</i> Navás, 1914 (Neuroptera: Myrmeleontidae): new advancements in systematics, biogeography and life history.","authors":"Yuchen Zheng, Yuezheng Tu, Zuqi Mai, Davide Badano, Xingyue Liu","doi":"10.1071/IS24010","DOIUrl":"https://doi.org/10.1071/IS24010","url":null,"abstract":"<p><p>The antlion genera Gatzara and Nepsalus (Myrmeleontidae: Dendroleontinae) inhabit mountain forests and are characterised by camouflaging larvae. Both genera remain poorly known despite recent findings on systematics and distribution. We report the discovery of new specimens and the previously unknown larvae of the rare species Gatzara jubilaea Navás, 1915, Nepsalus insolitus (Walker, 1860) and N. decorosus (Yang, 1988). These provide new evidence regarding the affinities of these species, and updated knowledge of the distribution, larval morphology and biology. Moreover, a new species of Nepsalus , N. maclachlani Badano, Zheng & Liu, sp. nov. is described from Sri Lanka based on historical museum collections. The discovery of the immature stages of Gatzara shows that the larvae of this genus share the same specialised ecological characteristics and habits as those of Nepsalus but are less morphologically derived. We also reconstruct a molecular phylogeny of this lineage, estimating the divergence time and biogeographical history by adding the new samples. The evolution of the Gatzara + Nepsalus lineage is associated with two major mountain ranges on the southern Tibetan Plateau, i.e. the Himalayas and the Hengduan Mountains. ZooBank: urn:lsid:zoobank.org:pub:68E68211-DFC1-4D98-997B-8A23BA8F9B69.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-based recognition of parasitoid wasps using advanced neural networks. 利用先进的神经网络对寄生蜂进行基于图像的识别。
IF 2.2 2区 生物学
Invertebrate Systematics Pub Date : 2024-06-01 DOI: 10.1071/IS24011
Hossein Shirali, Jeremy Hübner, Robin Both, Michael Raupach, Markus Reischl, Stefan Schmidt, Christian Pylatiuk
{"title":"Image-based recognition of parasitoid wasps using advanced neural networks.","authors":"Hossein Shirali, Jeremy Hübner, Robin Both, Michael Raupach, Markus Reischl, Stefan Schmidt, Christian Pylatiuk","doi":"10.1071/IS24011","DOIUrl":"https://doi.org/10.1071/IS24011","url":null,"abstract":"<p><p>Hymenoptera has some of the highest diversity and number of individuals among insects. Many of these species potentially play key roles as food sources, pest controllers and pollinators. However, little is known about the diversity and biology and ~80% of the species have not yet been described. Classical taxonomy based on morphology is a rather slow process but DNA barcoding has already brought considerable progress in identification. Innovative methods such as image-based identification and automation can further speed up the process. We present a proof of concept for image data recognition of a parasitic wasp family, the Diapriidae (Hymenoptera), obtained as part of the GBOL III project. These tiny (1.2-4.5mm) wasps were photographed and identified using DNA barcoding to provide a solid ground truth for training a neural network. Taxonomic identification was used down to the genus level. Subsequently, three different neural network architectures were trained, evaluated and optimised. As a result, 11 different genera of diaprids and one mixed group of 'other Hymenoptera' can be classified with an average accuracy of 96%. Additionally, the sex of the specimen can be classified automatically with an accuracy of >97%.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative taxonomy in Syllis prolifera (Annelida, Syllidae): from a unique cosmopolitan species to a complex of pseudocryptic species. Syllis prolifera(Annelida,Syllidae)的综合分类法:从一个独特的世界性物种到一个假隐性物种的复合体。
IF 1.8 2区 生物学
Invertebrate Systematics Pub Date : 2024-06-01 DOI: 10.1071/IS24004
Irene Del Olmo, Josep Roma-Cavagliani, María Del Rosario Martín-Hervás, Joachim Langeneck, Juan Lucas Cervera, Patricia Álvarez-Campos
{"title":"Integrative taxonomy in <i>Syllis prolifera</i> (Annelida, Syllidae): from a unique cosmopolitan species to a complex of pseudocryptic species.","authors":"Irene Del Olmo, Josep Roma-Cavagliani, María Del Rosario Martín-Hervás, Joachim Langeneck, Juan Lucas Cervera, Patricia Álvarez-Campos","doi":"10.1071/IS24004","DOIUrl":"https://doi.org/10.1071/IS24004","url":null,"abstract":"<p><p>Syllis prolifera (Syllidae, Syllinae) is an abundant species of marine annelids commonly found in warm to temperate waters worldwide. Although morphological variability occurs among populations, S. prolifera has long been considered a cosmopolitan species, widely distributed in coastal environments, including acidified and polluted areas. However, the increasing number of cases of cryptic and pseudocryptic speciation in several polychaete families in recent years has led us to question whether S. prolifera represents a single globally distributed taxon or is a species complex. To address this question, we conducted an integrative study, combining morphological, ecological and molecular data of 52 S. prolifera specimens collected in different localities across the western Mediterranean Sea and the Gulf of Cadiz. Our phylogenetic and species delimitation analyses that included two mitochondrial DNA markers (COI and 16S rRNA ) were congruent in not considering S. prolifera a unique entity. Five distinct lineages that can also be recognised by certain morphological and ecological traits were identified from these analyses instead. Overall, our study does not support the homogeneity of S. prolifera across the Mediterranean Sea, providing a new example of pseudocrypticism in marine invertebrates.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitogenome architecture supports the non-monophyly of the cosmopolitan parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) recovered by nuclear and mitochondrial phylogenomics. 有丝分裂基因组结构支持通过核和线粒体系统发生组学发现的世界性寄生蜂亚科Doryctinae(膜翅目:腕蜂科)的非单系性。
IF 2.2 2区 生物学
Invertebrate Systematics Pub Date : 2024-05-01 DOI: 10.1071/IS24029
Rubén Castañeda-Osorio, Sergey A Belokobylskij, Jovana M Jasso-Martínez, Ernesto Samacá-Sáenz, Robert R Kula, Alejandro Zaldívar-Riverón
{"title":"Mitogenome architecture supports the non-monophyly of the cosmopolitan parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) recovered by nuclear and mitochondrial phylogenomics.","authors":"Rubén Castañeda-Osorio, Sergey A Belokobylskij, Jovana M Jasso-Martínez, Ernesto Samacá-Sáenz, Robert R Kula, Alejandro Zaldívar-Riverón","doi":"10.1071/IS24029","DOIUrl":"10.1071/IS24029","url":null,"abstract":"<p><p>Mitochondrial DNA gene organisation is an important source of phylogenetic information for various metazoan taxa at different evolutionary timescales, though this has not been broadly tested for all insect groups nor within a phylogenetic context. The cosmopolitan subfamily Doryctinae is a highly diverse group of braconid wasps mainly represented by ectoparasitoids of xylophagous beetle larvae. Previous molecular studies based on Sanger and genome-wide (ultraconserved elements, UCE; and mitochondrial genomes) sequence data have recovered a non-monophyletic Doryctinae, though the relationships involved have always been weakly supported. We characterised doryctine mitogenomes and conducted separate phylogenetic analyses based on mitogenome and UCE sequence data of ~100 representative doryctine genera to assess the monophyly and higher-level classification of the subfamily. We identified rearrangements of mitochondrial transfer RNAs (tRNAs) that support a non-monophyletic Doryctinae consisting of two separate non-related clades with strong geographic structure ('New World' and 'Old World' clades). This geographic structure was also consistently supported by the phylogenetic analyses preformed with mitogenome and UCE sequence data. These results highlight the utility of the mitogenome gene rearrangements as a potential source of phylogenetic information at different evolutionary timescales.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"38 ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular phylogeny reveals Cenonovaculina gen. nov. (Adapedonta: Pharidae), a new freshwater razor clam genus from Indochina 分子系统进化揭示印度支那新的淡水蛏属 Cenonovaculina gen.
IF 2.2 2区 生物学
Invertebrate Systematics Pub Date : 2024-04-30 DOI: 10.1071/is24024
Ekgachai Jeratthitikul, Chirasak Sutcharit
{"title":"Molecular phylogeny reveals Cenonovaculina gen. nov. (Adapedonta: Pharidae), a new freshwater razor clam genus from Indochina","authors":"Ekgachai Jeratthitikul, Chirasak Sutcharit","doi":"10.1071/is24024","DOIUrl":"https://doi.org/10.1071/is24024","url":null,"abstract":"<p>The razor clam genus <i>Novaculina</i> is a secondary marine-derived freshwater taxa within the otherwise exclusively marine family Pharidae. <i>Novaculina</i> currently comprises four valid species that are distributed allopatrically across several drainages in Asia. We employed an integrated approach, combining morphology and molecular phylogenetic analyses to elucidate the taxonomic placement of members within this genus. The multi-locus phylogenetic trees based on cytochrome <i>c</i> oxidase subunit <i>I</i> (<i>COI</i>), <i>16S</i> rRNA and <i>28S</i> rRNA gene sequences demonstrate that <i>Novaculina</i> is polyphyletic. Specimens identified as <i>N. siamensis</i> form a distinct clade that is not sister group to other currently recognised congeners. Furthermore, morphological examination reveals distinct characteristics in ‘<i>N. siamensis</i>’, namely a fused, fringed siphon, in contrast to the separated, smooth siphons observed in other species. Based on these findings, we propose the establishment of a new genus, <i>Cenonovaculina</i> gen. nov., to accommodate ‘<i>N. siamensis</i>’. The new genus is distinguished from other genera in having a short shell, deep pallial sinus, elongate, oval to bean-shaped anterior adductor scar and long fused siphons surrounded by conical tentacles.</p><p>ZooBank: urn:lsid:zoobank.org:pub:6E16FC43-5BBA-4791-A805-1C84859877A3</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"14 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信