Qi Xu, Minghui Jin, Hua Xiao, Yan Peng, Fan Zhang, Hongran Li, Kongming Wu, Yutao Xiao
{"title":"Genomic predictions of invasiveness and adaptability of the cotton bollworm in response to climate change.","authors":"Qi Xu, Minghui Jin, Hua Xiao, Yan Peng, Fan Zhang, Hongran Li, Kongming Wu, Yutao Xiao","doi":"10.1016/j.jgg.2025.01.016","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.016","url":null,"abstract":"<p><p>Agricultural pests cause enormous losses in annual agricultural production. Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management. In this study, we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm (Helicoverpa armigera) in the adaptation to local environments and resilience to future climate change. Notably, the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades. Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm. Approximately 19,000 years ago, the cotton bollworm expanded from its ancestral African population, followed by gradual occupations of the European, Asian, Oceanian, and American continents. Furthermore, we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential. Additionally, a large number of candidate genes and SNPs linked to climatic adaptation were mapped. These findings could inform sustainable pest management strategies in the face of climate change, aiding future pest forecasting and management planning.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"uniLIVER: a human liver cell atlas for data-driven cellular state mapping.","authors":"Yanhong Wu, Yuhan Fan, Yuxin Miao, Yuman Li, Guifang Du, Zeyu Chen, Jinmei Diao, Yu-Ann Chen, Mingli Ye, Renke You, Amin Chen, Yixin Chen, Wenrui Li, Wenbo Guo, Jiahong Dong, Xuegong Zhang, Yunfang Wang, Jin Gu","doi":"10.1016/j.jgg.2025.01.017","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.017","url":null,"abstract":"<p><p>The liver performs several vital functions such as metabolism, toxin removal, and glucose storage through the coordination of various cell types. With the recent breakthrough of the single-cell/single-nucleus RNA-seq (sc/snRNA-seq) techniques, there is a great opportunity to establish a reference cell map of the liver at single-cell resolution with transcriptome-wise features. In this study, we build a unified liver cell atlas uniLIVER (http://lifeome.net/database/uniliver) by integrative analysis of a large-scale sc/snRNA-seq data collection of normal human liver with 331,125 cells and 79 samples from 6 datasets. Moreover, we introduce LiverCT, a novel machine learning based method for mapping any query dataset to the liver reference map by introducing the definition of \"variant\" cellular states analogy to the sequence variants in genomic analysis. Applying LiverCT on liver cancer datasets, we find that the \"deviated\" states of T cells are highly correlated with the stress pathway activities in hepatocellular carcinoma, and the enrichments of tumor cells with the hepatocyte-cholangiocyte \"intermediate\" states significantly indicate poor prognosis. Besides, we find the tumor cells of different patients have different zonation tendencies and this zonation tendency is also significantly associated with the prognosis. This reference atlas mapping framework can also be extended to any other tissues.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LG1 promotes preligule band formation through directly activating ZmPIN1 genes in maize.","authors":"Zhuojun Zhong, Minhao Yao, Yingying Cao, Dexin Kong, Baobao Wang, Yanli Wang, Rongxin Shen, Haiyang Wang, Qing Liu","doi":"10.1016/j.jgg.2025.01.014","DOIUrl":"10.1016/j.jgg.2025.01.014","url":null,"abstract":"<p><p>Increasing plant density is an effective strategy for enhancing crop yield per unit land area. A key architectural trait for crops adapting to high planting density is smaller leaf angle (LA). Previous studies have demonstrated that LG1, a SQUAMOSA BINDING PROTEIN (SBP) transcription factor, plays a critical role in LA establishment. However, the molecular mechanisms underlying the regulation of LG1 on LA formation remain largely unclear. In this study, we conduct comparative RNA-seq analysis of the preligule band (PLB) region of wild type and lg1 mutant leaves. Gene Ontology (GO) term enrichment analysis reveals enrichment of phytohormone pathways and transcription factors, including three auxin transport genes ZmPIN1a, ZmPIN1b, and ZmPIN1c. Further molecular experiments demonstrate that LG1 could directly bind to the promoter region of these auxin transport genes and activate their transcription. We also show that double and triple mutants of these ZmPINs genes exhibit varying degrees of auricle size reduction and thus decreased LA. In the contrary, overexpression of ZmPIN1a causes larger auricle and LA. Taken together, our findings establish a functional link between LG1 and auxin transport in regulating PLB formation and provide valuable targets for genetic improvement of LA for breeding high-density tolerant maize cultivars.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maize transcription factor ZmEREB167 negatively regulates starch accumulation and kernel size.","authors":"Xiangyu Qing, Jianrui Li, Zhen Lin, Wei Wang, Fei Yi, Jian Chen, Qiujie Liu, Weibin Song, Jinsheng Lai, Baojian Chen, Haiming Zhao, Zhijia Yang","doi":"10.1016/j.jgg.2025.01.011","DOIUrl":"10.1016/j.jgg.2025.01.011","url":null,"abstract":"<p><p>Transcription factors play critical roles in the regulation of gene expression during maize kernel development. The maize endosperm, a large storage organ, accounting for nearly 90% of the dry weight of mature kernel, serves as the main place for starch storage. In this study, we identify an endosperm-specific EREB gene, ZmEREB167, which encodes a nucleus-localized EREB protein. Knockout of ZmEREB167 significantly increases kernel size and weight, as well as starch and protein content, compared with the wild type. In situ hybridization experiments show that ZmEREB167 is highly expressed in the BETL as well as PED regions of maize kernels. Dual-luciferase assays show that ZmEREB167 exhibits transcriptionally repressor activity in maize protoplasts. Transcriptome analysis reveals that a large number of genes are up-regulated in the Zmereb167-C1 mutant compared with the wild type, including key genetic factors such as ZmMRP-1 and ZmMN1, as well as multiple transporters involved in maize endosperm development. Integration of RNA-seq and ChIP-seq results identify 68 target genes modulated by ZmEREB167. We find that ZmEREB167 directly targets OPAQUE2, ZmNRT1.1, ZmIAA12, ZmIAA19, and ZmbZIP20, repressing their expressions. Our study demonstrates that ZmEREB167 functions as a negative regulator in maize endosperm development and affects starch accumulation and kernel size.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifaceted interplays between the essential players and lipid peroxidation in ferroptosis.","authors":"Conghe Liu, Zhihao Liu, Zheng Dong, Sijin Liu, Haidong Kan, Shuping Zhang","doi":"10.1016/j.jgg.2025.01.009","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.009","url":null,"abstract":"<p><p>Ferroptosis, a type of programmed cell death, represents a distinct paradigm in cell biology. It is characterized by the iron-dependent accumulation of reactive oxygen species, which induce lipid peroxidation (LPO), and is orchestrated by the interplay between iron, lipid peroxides, and glutathione. In this review, we emphasize the frequently overlooked role of iron in LPO beyond the classical iron-driven Fenton reaction in several crucial processes that regulate cellular iron homeostasis, including iron intake and export as well as ferritinophagy, and the emerging roles of endoplasmic reticulum-resident flavoprotein oxidoreductases, especially P450 oxidoreductases, in modulating LPO. We summarize how various types of fatty acids (FAs), including saturated, monounsaturated, and polyunsaturated FAs, differentially influence ferroptosis when incorporated into phospholipids. Furthermore, we highlight the therapeutic potential of targeting LPO to mitigate ferroptosis and discuss the regulatory mechanisms of endogenous lipophilic radical-trapping antioxidants that confer resistance to ferroptosis, shedding light on therapeutic avenues for ferroptosis-associated diseases.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenwei Liang, Yisui Huang, Yuanhao Hao, Xin Song, Tao Zhu, Chen Liu, Chenlong Li
{"title":"The HISTONE ACETYLTRANSFERASE 1 interacts with CONSTANS to promote flowering in Arabidopsis.","authors":"Zhenwei Liang, Yisui Huang, Yuanhao Hao, Xin Song, Tao Zhu, Chen Liu, Chenlong Li","doi":"10.1016/j.jgg.2025.01.010","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.010","url":null,"abstract":"<p><p>Chromatin modifications including histone acetylation play essential roles in regulating flowering. The CBP/p300 family HISTONE ACETYLTRANSFERASE 1 (HAC1), which mediates histone acetylation, promotes the process of floral transition; however, the precise mechanism remains largely unclear. Specifically, how HAC1 is involved in the flowering regulatory network and which genes are the direct targets of HAC1 during flowering regulation are still unknown. In this study, we elucidated the critical function of HAC1 in promoting flowering via exerting active epigenetic markers at two key floral integrators, FT and SOC1, thereby regulating their expression to trigger the flowering process. We show that HAC1 physically interacts with CONSTANS (CO) in vivo and in vitro. Chromatin immunoprecipitation results indicate that HAC1 directly binds to the FT and SOC1 loci. Loss of HAC1 impairs CO-mediated transcriptional activation of FT and SOC1 in promoting flowering. Moreover, CO mutation leads to the decreased enrichment of HAC1 at FT and SOC1, indicating that CO recruits HAC1 to FT and SOC1. Finally, HAC1, as well as CO, is required for the elevated histone acetylation level at FT and SOC1. Taken together, our finding reveals that HAC1-mediated histone acetylation boots flowering via a CO-dependent activation of FT and SOC1.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KanCell: dissecting cellular heterogeneity in biological tissues through integrated single-cell and spatial transcriptomics.","authors":"Zhenghui Wang, Ruoyan Dai, Mengqiu Wang, Lixin Lei, Zhiwei Zhang, Kaitai Han, Zijun Wang, Qianjin Guo","doi":"10.1016/j.jgg.2024.11.009","DOIUrl":"10.1016/j.jgg.2024.11.009","url":null,"abstract":"<p><p>KanCell is a deep learning model based on Kolmogorov-Arnold networks (KAN) designed to enhance cellular heterogeneity analysis by integrating single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data. ST technologies provide insights into gene expression within tissue context, revealing cellular interactions and microenvironments. To fully leverage this potential, effective computational models are crucial. We evaluate KanCell on both simulated and real datasets from technologies such as STARmap, Slide-seq, Visium, and Spatial Transcriptomics. Our results demonstrate that KanCell outperforms existing methods across metrics like PCC, SSIM, COSSIM, RMSE, JSD, ARS, and ROC, with robust performance under varying cell numbers and background noise. Real-world applications on human lymph nodes, hearts, melanoma, breast cancer, dorsolateral prefrontal cortex, and mouse embryo brains confirmed its reliability. Compared with traditional approaches, KanCell effectively captures non-linear relationships and optimizes computational efficiency through KAN, providing an accurate and efficient tool for ST. By improving data accuracy and resolving cell type composition, KanCell reveals cellular heterogeneity, clarifies disease microenvironments, and identifies therapeutic targets, addressing complex biological challenges.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uncovering the chromatin-mediated transcriptional regulatory network governing cold stress responses in fish immune cells.","authors":"He Jiao, Songqian Huang, Minghao Zhang, Qiao Huang, Chenyu Yan, Jingting Qi, Jiangbo Cheng, Yuan Xu, Xue Zhai, Xinwen Li, Siyao Zhan, Wei Li, Zhichao Wu, Jiulin Chan, Liangbiao Chen, Peng Hu","doi":"10.1016/j.jgg.2025.01.008","DOIUrl":"https://doi.org/10.1016/j.jgg.2025.01.008","url":null,"abstract":"<p><p>Temperature fluctuations challenge ectothermic species, particularly tropical fish dependent on external temperatures for physiological regulation. However, the molecular mechanisms through which low-temperature stress impacts immune responses in these species, especially in relation to chromatin accessibility and epigenetic regulation, remain poorly understood. In this study, we investigate chromatin and transcriptional changes in the head kidney and thymus tissues of Nile tilapia (Oreochromis niloticus), a tropical fish of significant economic importance, under cold stress. By analyzing cis-regulatory elements in open chromatin regions and their associated transcription factors (TFs), we construct a comprehensive transcriptional regulatory network (TRN) governing immune responses, including DNA damage-induced apoptosis. Our analysis identifies 119 TFs within the TRN, with Stat1 emerging as a central hub exhibiting distinct binding dynamics under cold stress, as revealed by footprint analysis. Overexpression of Stat1 in immune cells leads to apoptosis and increases the expression of apoptosis-related genes, many of which contain Stat1 binding sites in their regulatory regions, emphasizing its critical role in immune cell survival during cold stress. These results provide insights into the transcriptional and epigenetic regulation of immune responses to cold stress in tilapia and highlight Stat1 as a promising target for enhancing cold tolerance in tropical fish species.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"S-sulfenylation-mediated inhibition of the GSNOR1 activity regulates ovule development in Arabidopsis.","authors":"Shina Sun, Peng-Fei Jia, Wan Wang, Lichao Chen, Xinru Gong, Huifang Lin, Rong Wu, Wei-Cai Yang, Hong-Ju Li, Jianru Zuo, Hongyan Guo","doi":"10.1016/j.jgg.2025.01.007","DOIUrl":"10.1016/j.jgg.2025.01.007","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) and nitric oxide (NO) are two critical classes of signaling molecules that regulate plant development and stress responses. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by the highly conserved GSNO reductase (GSNOR). However, the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear. Here, we show that H<sub>2</sub>O<sub>2</sub> negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis. S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity. A GSNOR1<sup>C284S</sup> mutation causes a reduction of the total SNO level in pistils, thereby disrupting NO homeostasis and eventually leading to defective ovule development. These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity, thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}