{"title":"Nitrogen inhibition of nitrogenase activity involves the modulation of cytosolic invertase in soybean nodule.","authors":"Qinzhen Xu, Xin Wang, Nan Wang, Suning Li, Xiaolei Yao, Huaqin Kuang, Zhimin Qiu, Danxia Ke, Wenqiang Yang, Yuefeng Guan","doi":"10.1016/j.jgg.2024.06.013","DOIUrl":"10.1016/j.jgg.2024.06.013","url":null,"abstract":"<p><p>Legume symbiotic nitrogen fixation (SNF) is suppressed by inorganic nitrogen (N) in the soil. High N inhibition of nitrogenase activity is associated with the deprivation of carbon allocation and metabolism in nodules. However, the underlying molecular mechanisms remain unclear. Here, we identify GmCIN1 which encodes a cytosolic invertase, as a gateway for the N-tuning of sucrose utilization in nodules. GmCIN1 is enriched in mature soybean nodules and its expression is regulated by nitrogen status. The knockout of GmCIN1 using genome editing partially mimics the inhibitory effects of N on nitrogenase activity and sugar content and the impact of high N on nodule transcriptomes. This indicates that GmCIN1 partially mediates the high N inhibition of nodule activity. Moreover, ChIP-qPCR and EMSA reveal that SNAP1/2 transcription factors directly bind to the GmCIN1 promoter. In addition, SNAP1/2 may be involved in the repression of GmCIN1 expression in mature nodules at high N concentrations. Our findings provide insights into the involvement of the transcriptional tuning of carbon (C) metabolism genes by N-signaling modulators in the N-induced inhibition of nitrogenase activity.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development.","authors":"Wanting Wang, Menglong Rui","doi":"10.1016/j.jgg.2024.06.010","DOIUrl":"10.1016/j.jgg.2024.06.010","url":null,"abstract":"<p><p>Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuangshuang Wang, Lei Lu, Min Xu, Jian Jiang, Xiaofeng Wang, Yao Zheng, Yitao Liang, Tianqi Zhang, Minghui Qin, Pinkuan Zhu, Ling Xu, Yina Jiang
{"title":"Near-complete de novo genome assemblies of tomato (Solanum lycopersicum) determinate cultivars Micro-Tom and M82.","authors":"Shuangshuang Wang, Lei Lu, Min Xu, Jian Jiang, Xiaofeng Wang, Yao Zheng, Yitao Liang, Tianqi Zhang, Minghui Qin, Pinkuan Zhu, Ling Xu, Yina Jiang","doi":"10.1016/j.jgg.2024.06.006","DOIUrl":"10.1016/j.jgg.2024.06.006","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziwei Chen, Lu Chen, Jingze Tan, Yizhen Mao, Meng Hao, Yi Li, Yi Wang, Jinxi Li, Jiucun Wang, Li Jin, Hong-Xiang Zheng
{"title":"Natural selection shaped the protective effect of the mtDNA lineage against obesity in Han Chinese populations.","authors":"Ziwei Chen, Lu Chen, Jingze Tan, Yizhen Mao, Meng Hao, Yi Li, Yi Wang, Jinxi Li, Jiucun Wang, Li Jin, Hong-Xiang Zheng","doi":"10.1016/j.jgg.2024.06.005","DOIUrl":"10.1016/j.jgg.2024.06.005","url":null,"abstract":"<p><p>Mitochondria play a key role in lipid metabolism, and mitochondrial DNA (mtDNA) mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function. In this study, we investigated mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from three independent populations. The association analysis of 16 basal mtDNA haplogroups with body mass index, waist circumference, and waist-to-hip ratio revealed that only haplogroup M7 was significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort, verified by the analysis of a single population, i.e., the Zhengzhou population. Furthermore, subhaplogroup analysis suggested that M7b1a1 was the most likely haplogroup associated with a decreased obesity risk, and the variation T12811C (causing Y159H in ND5) harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function. Specifically, we found that proportionally more nonsynonymous mutations accumulated in M7b1a1 carriers, indicating that M7b1a1 was either under positive selection or subject to a relaxation of selective constraints. We also found that nuclear variants, especially in DACT2 and PIEZO1, may functionally interact with M7b1a1.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoya Zhang, Abhisek Bhattacharya, Chunxiang Pu, Yan Dai, Jia Liu, Lang Rao, Chaoguang Tian
{"title":"A programmable CRISPR/dCas9-based epigenetic editing system enabling loci-targeted histone citrullination and precise transcription regulation.","authors":"Xiaoya Zhang, Abhisek Bhattacharya, Chunxiang Pu, Yan Dai, Jia Liu, Lang Rao, Chaoguang Tian","doi":"10.1016/j.jgg.2024.05.010","DOIUrl":"10.1016/j.jgg.2024.05.010","url":null,"abstract":"<p><p>Histone citrullination, an important post-translational modification mediated by peptidyl arginine deiminases, is essential for many physiological processes and epigenetic regulation. However, the causal relationship between histone citrullination and specific gene regulation remains unresolved. In this study, we develop a programmable epigenetic editor by fusing the peptidyl arginine deiminase PPAD from Porphyromonas gingivalis with dCas9. With the assistance of gRNA, PPAD-dCas9 can recruit peptidyl arginine deiminases to specific genomic loci, enabling direct manipulation of the epigenetic landscape and regulation of gene expression. Our citrullination editor allows for site-specific manipulation of histone H3R2,8,17 and 26 at target human gene loci, resulting in the activation or suppression of different genes in a locus-specific manner. Moreover, the epigenetic effects of the citrullination editor are specific and sustained. This epigenetic editor offers an accurate and efficient tool for exploring gene regulation of histone citrullination.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Yang, Tianqi Zhu, Jiaying Yin, Qiaoli Zhang, Jing Li, Hong Fan, Gaijing Han, Weiyin Xu, Nan Liu, Xiang Lv
{"title":"The non-canonical poly(A) polymerase FAM46C promotes erythropoiesis.","authors":"Ke Yang, Tianqi Zhu, Jiaying Yin, Qiaoli Zhang, Jing Li, Hong Fan, Gaijing Han, Weiyin Xu, Nan Liu, Xiang Lv","doi":"10.1016/j.jgg.2024.02.003","DOIUrl":"10.1016/j.jgg.2024.02.003","url":null,"abstract":"<p><p>The post-transcriptional regulation of mRNA is a crucial component of gene expression. The disruption of this process has detrimental effects on the normal development and gives rise to various diseases. Searching for novel post-transcriptional regulators and exploring their roles are essential for understanding development and disease. Through a multimodal analysis of red blood cell trait genome-wide association studies (GWAS) and transcriptomes of erythropoiesis, we identify FAM46C, a non-canonical RNA poly(A) polymerase, as a necessary factor for proper red blood cell development. FAM46C is highly expressed in the late stages of the erythroid lineage, and its developmental upregulation is controlled by an erythroid-specific enhancer. We demonstrate that FAM46C stabilizes mRNA and regulates erythroid differentiation in a polymerase activity-dependent manner. Furthermore, we identify transcripts of lysosome and mitochondria components as highly confident in vivo targets of FAM46C, which aligns with the need of maturing red blood cells for substantial clearance of organelles and maintenance of cellular redox homeostasis. In conclusion, our study unveils a unique role of FAM46C in positively regulating lysosome and mitochondria components, thereby promoting erythropoiesis.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensing of membrane tensions: the pleiotropic functions of OSCA/TMEM63 mechanosensitive ion channels.","authors":"Bo Yu, Alex Costa, Yang Zhao","doi":"10.1016/j.jgg.2024.02.002","DOIUrl":"10.1016/j.jgg.2024.02.002","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Caudal hematopoietic tissue supports definitive erythrocytes via epoa and is dispensable for definitive neutrophils.","authors":"Zhujuan Huang, Yongtai Xu, Zhongkai Qiu, Yunyun Jiang, Jiaye Wu, Qing Lin, Sicong He, Jianan Y Qu, Jiahao Chen, Jin Xu","doi":"10.1016/j.jgg.2024.02.001","DOIUrl":"10.1016/j.jgg.2024.02.001","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNAirport: a deep neural network-based database characterizing representative gene models in plants.","authors":"Sitao Zhu, Shu Yuan, Ruixia Niu, Yulu Zhou, Zhao Wang, Guoyong Xu","doi":"10.1016/j.jgg.2024.03.004","DOIUrl":"10.1016/j.jgg.2024.03.004","url":null,"abstract":"<p><p>A 5'-leader, known initially as the 5'-untranslated region, contains multiple isoforms due to alternative splicing (aS) and alternative transcription start site (aTSS). Therefore, a representative 5'-leader is demanded to examine the embedded RNA regulatory elements in controlling translation efficiency. Here, we develop a ranking algorithm and a deep-learning model to annotate representative 5'-leaders for five plant species. We rank the intra-sample and inter-sample frequency of aS-mediated transcript isoforms using the Kruskal-Wallis test-based algorithm and identify the representative aS-5'-leader. To further assign a representative 5'-end, we train the deep-learning model 5'leaderP to learn aTSS-mediated 5'-end distribution patterns from cap-analysis gene expression data. The model accurately predicts the 5'-end, confirmed experimentally in Arabidopsis and rice. The representative 5'-leader-contained gene models and 5'leaderP can be accessed at RNAirport (http://www.rnairport.com/leader5P/). The Stage 1 annotation of 5'-leader records 5'-leader diversity and will pave the way to Ribo-Seq open-reading frame annotation, identical to the project recently initiated by human GENCODE.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}