The Monochoria genome provides insights into the molecular mechanisms underlying floral heteranthery.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Genetics and Genomics Pub Date : 2025-06-01 Epub Date: 2025-02-26 DOI:10.1016/j.jgg.2025.02.008
Jingshan Yang, Jinming Chen, Xiangyan He, Guangxi Wang, Spencer C H Barrett, Zhizhong Li
{"title":"The Monochoria genome provides insights into the molecular mechanisms underlying floral heteranthery.","authors":"Jingshan Yang, Jinming Chen, Xiangyan He, Guangxi Wang, Spencer C H Barrett, Zhizhong Li","doi":"10.1016/j.jgg.2025.02.008","DOIUrl":null,"url":null,"abstract":"<p><p>Heteranthery, the occurrence of functionally and structurally distinct stamens within a flower, represents a striking example of convergent evolution among diverse animal-pollinated lineages. Although the ecological basis of this somatic polymorphism is understood, the developmental and molecular mechanisms are largely unknown. To address this knowledge gap, we selected Monochoria elata (Pontederiaceae) as our study system due to its typical heterantherous floral structure. We constructed a chromosome-level genome assembly of M. elata, conducted transcriptomic analyses and target phytohormone metabolome analysis to explore gene networks and hormones associated with heteranthery. We focused on three key stamen characteristics-colour, spatial patterning, and filament elongation-selected for their significant roles in stamen differentiation and their relevance to the functional diversity observed in heterantherous species. Our analyses suggest that gene networks involving MelLEAFY3, MADS-box, and TCP genes regulate stamen identity, with anthocyanin influencing colour, and lignin contributing to filament elongation. Additionally, variation in jasmonic acid and abscisic acid concentration between feeding and pollinating anthers appears to contribute to their morphological divergence. Our findings highlight gene networks and hormones associated with intra-floral stamen differentiation and indicate that whole genome duplications have likely facilitated the evolution of heteranthery during divergence from other Pontederiaceae without heteranthery.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"826-838"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.02.008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heteranthery, the occurrence of functionally and structurally distinct stamens within a flower, represents a striking example of convergent evolution among diverse animal-pollinated lineages. Although the ecological basis of this somatic polymorphism is understood, the developmental and molecular mechanisms are largely unknown. To address this knowledge gap, we selected Monochoria elata (Pontederiaceae) as our study system due to its typical heterantherous floral structure. We constructed a chromosome-level genome assembly of M. elata, conducted transcriptomic analyses and target phytohormone metabolome analysis to explore gene networks and hormones associated with heteranthery. We focused on three key stamen characteristics-colour, spatial patterning, and filament elongation-selected for their significant roles in stamen differentiation and their relevance to the functional diversity observed in heterantherous species. Our analyses suggest that gene networks involving MelLEAFY3, MADS-box, and TCP genes regulate stamen identity, with anthocyanin influencing colour, and lignin contributing to filament elongation. Additionally, variation in jasmonic acid and abscisic acid concentration between feeding and pollinating anthers appears to contribute to their morphological divergence. Our findings highlight gene networks and hormones associated with intra-floral stamen differentiation and indicate that whole genome duplications have likely facilitated the evolution of heteranthery during divergence from other Pontederiaceae without heteranthery.

单孢菌基因组提供了深入了解花异花异种的分子机制。
异雄蕊,即一朵花中功能和结构上不同的雄蕊,代表了不同动物传粉谱系趋同进化的一个显著例子。虽然这种体细胞多态性的生态基础已经被理解,但其发育和分子机制在很大程度上是未知的。为了解决这一知识缺口,我们选择了单根草(Monochoria elata, Pontederiaceae)作为我们的研究系统,因为它具有典型的异花结构。我们构建了elata染色体水平的基因组组装,进行了转录组学分析和靶植物激素代谢组学分析,以探索与异种交配相关的基因网络和激素。我们重点研究了雄蕊的三个关键特征——颜色、空间格局和花丝伸长,因为它们在雄蕊分化中起着重要作用,并与异雄花物种中观察到的功能多样性有关。我们的分析表明,涉及MelLEAFY3、MADS-box和TCP基因的基因网络调节雄蕊身份,花青素影响颜色,木质素促进花丝伸长。此外,茉莉酸和脱落酸浓度在取食花药和授粉花药之间的差异似乎有助于它们的形态差异。我们的研究结果强调了与花内雄蕊分化相关的基因网络和激素,并表明全基因组复制可能促进了在与其他没有异源性的庞特科植物分化过程中的异源性进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信