Journal of the American Mathematical Society最新文献

筛选
英文 中文
Nonuniqueness and mean-field criticality for percolation on nonunimodular transitive graphs 非一致传递图上渗流的非唯一性和平均场临界性
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-11-07 DOI: 10.1090/jams/953
Tom Hutchcroft
{"title":"Nonuniqueness and mean-field criticality for percolation on nonunimodular transitive graphs","authors":"Tom Hutchcroft","doi":"10.1090/jams/953","DOIUrl":"https://doi.org/10.1090/jams/953","url":null,"abstract":"<p>We study Bernoulli bond percolation on nonunimodular quasi-transitive graphs, and more generally graphs whose automorphism group has a nonunimodular quasi-transitive subgroup. We prove that percolation on any such graph has a nonempty phase in which there are infinite <italic>light</italic> clusters, which implies the existence of a nonempty phase in which there are <italic>infinitely many</italic> infinite clusters. That is, we show that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript c Baseline greater-than p Subscript h Baseline less-than-or-equal-to p Subscript u\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mi>c</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>></mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mi>h</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mi>u</mml:mi>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p_c>p_h leq p_u</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for any such graph. This answers a question of Häggström, Peres, and Schonmann (1999), and verifies the nonunimodular case of a well-known conjecture of Benjamini and Schramm (1996). We also prove that the triangle condition holds at criticality on any such graph, which implies that various critical exponents exist and take their mean-field values.</p>\u0000\u0000<p>All our results apply, for example, to the product <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript k Baseline times double-struck upper Z Superscript d\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mi>k</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>×<!-- × --></mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">T_ktimes mathbb {Z}^d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of a <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-regular tree with <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript d\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {Z}^d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formu","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/953","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48776274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Normal subgroups of mapping class groups and the metaconjecture of Ivanov 映射类群的正规子群与Ivanov的元对象
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-10-24 DOI: 10.1090/JAMS/927
Tara E. Brendle, D. Margalit
{"title":"Normal subgroups of mapping class groups and the metaconjecture of Ivanov","authors":"Tara E. Brendle, D. Margalit","doi":"10.1090/JAMS/927","DOIUrl":"https://doi.org/10.1090/JAMS/927","url":null,"abstract":"We prove that if a normal subgroup of the extended mapping class group of a closed surface has an element of sufficiently small support, then its automorphism group and abstract commensurator group are both isomorphic to the extended mapping class group. The proof relies on another theorem we prove, which states that many simplicial complexes associated to a closed surface have automorphism group isomorphic to the extended mapping class group. These results resolve the metaconjecture of N. V. Ivanov, which asserts that any “sufficiently rich” object associated to a surface has automorphism group isomorphic to the extended mapping class group, for a broad class of such objects. As applications, we show: (1) right-angled Artin groups and surface groups cannot be isomorphic to normal subgroups of mapping class groups containing elements of small support, (2) normal subgroups of distinct mapping class groups cannot be isomorphic if they both have elements of small support, and (3) distinct normal subgroups of the mapping class group with elements of small support are not isomorphic. Our results also suggest a new framework for the classification of normal subgroups of the mapping class group.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/927","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47198217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
Virtual homological spectral radii for automorphisms of surfaces 曲面自同构的虚同调谱半径
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-10-13 DOI: 10.1090/jams/949
Yi Liu
{"title":"Virtual homological spectral radii for automorphisms of surfaces","authors":"Yi Liu","doi":"10.1090/jams/949","DOIUrl":"https://doi.org/10.1090/jams/949","url":null,"abstract":"In this paper, it is shown that any surface automorphism of positive mapping-class entropy possesses a virtual homological eigenvalue which lies outside the unit circle of the complex plane.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/949","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42023908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Multipoint distribution of periodic TASEP 周期性TASEP的多点分布
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-10-09 DOI: 10.1090/JAMS/915
J. Baik, Zhipeng Liu
{"title":"Multipoint distribution of periodic TASEP","authors":"J. Baik, Zhipeng Liu","doi":"10.1090/JAMS/915","DOIUrl":"https://doi.org/10.1090/JAMS/915","url":null,"abstract":"The height fluctuations of the models in the KPZ class are expected to converge to a universal process. The spatial process at equal time is known to converge to the Airy process or its variations. However, the temporal process, or more generally the two-dimensional space-time fluctuation field, is less well understood. We consider this question for the periodic TASEP (totally asymmetric simple exclusion process). For a particular initial condition, we evaluate the multitime and multilocation distribution explicitly in terms of a multiple integral involving a Fredholm determinant. We then evaluate the large-time limit in the so-called relaxation time scale.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41978246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 56
Symplectic topology of $K3$ surfaces via mirror symmetry 基于镜像对称的$K3$曲面的辛拓扑
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-09-27 DOI: 10.1090/JAMS/946
Nick Sheridan, I. Smith
{"title":"Symplectic topology of $K3$ surfaces via mirror symmetry","authors":"Nick Sheridan, I. Smith","doi":"10.1090/JAMS/946","DOIUrl":"https://doi.org/10.1090/JAMS/946","url":null,"abstract":"We study the symplectic topology of certain K3 surfaces (including the \"mirror quartic\" and \"mirror double plane\"), equipped with certain Kahler forms. In particular, we prove that the symplectic Torelli group may be infinitely generated, and derive new constraints on Lagrangian tori. The key input, via homological mirror symmetry, is a result of Bayer and Bridgeland on the autoequivalence group of the derived category of an algebraic K3 surface of Picard rank one.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/946","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49383546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Koszul duality for Kac–Moody groups and characters of tilting modules Kac-Moody群的Koszul对偶与倾斜模的性质
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-06-01 DOI: 10.1090/JAMS/905
Pramod N. Achar, Shotaro Makisumi, S. Riche, G. Williamson
{"title":"Koszul duality for Kac–Moody groups and characters of tilting modules","authors":"Pramod N. Achar, Shotaro Makisumi, S. Riche, G. Williamson","doi":"10.1090/JAMS/905","DOIUrl":"https://doi.org/10.1090/JAMS/905","url":null,"abstract":"<p>We establish a character formula for indecomposable tilting modules for connected reductive groups in characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\u0000 <mml:semantics>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">ell</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in terms of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\u0000 <mml:semantics>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">ell</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-Kazhdan–Lusztig polynomials, for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l greater-than h\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mi>h</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">ell > h</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> the Coxeter number. Using results of Andersen, one may deduce a character formula for simple modules if <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l greater-than-or-equal-to 2 h minus 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>ℓ<!-- ℓ --></mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mi>h</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">ell ge 2h-2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. Our results are a consequence of an extension to modular coefficients of a monoidal Koszul duality equivalence established by Bezrukavnikov and Yun.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41491690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 77
The 4-dimensional light bulb theorem 四维灯泡定理
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-05-28 DOI: 10.1090/JAMS/920
David Gabai
{"title":"The 4-dimensional light bulb theorem","authors":"David Gabai","doi":"10.1090/JAMS/920","DOIUrl":"https://doi.org/10.1090/JAMS/920","url":null,"abstract":"For embedded 2-spheres in a 4-manifold sharing the same embedded transverse sphere homotopy implies isotopy, provided the ambient 4-manifold has no $BZ_2$-torsion in the fundamental group. This gives a generalization of the classical light bulb trick to 4-dimensions, the uniqueness of spanning discs for a simple closed curve in $S^4$ and $pi_0(Diff_0(S^2times D^2)/Diff_0(B^4))=1$. In manifolds with $BZ_2$-torsion, one surface can be put into a normal form relative to the other.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48891922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
The coarse geometry of Tsirelson’s space and applications Tsirelson空间的粗几何及其应用
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-05-18 DOI: 10.1090/jams/899
F. Baudier, G. Lancien, T. Schlumprecht
{"title":"The coarse geometry of Tsirelson’s space and applications","authors":"F. Baudier, G. Lancien, T. Schlumprecht","doi":"10.1090/jams/899","DOIUrl":"https://doi.org/10.1090/jams/899","url":null,"abstract":"The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $T^*$. Every Banach space that is coarsely embeddable into $T^*$ must be reflexive and all its spreading models must be isomorphic to $c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $T^*$ does not coarsely contain $c_0$ nor $ell_p$ for $pin[1,infty)$. We show that there is no infinite dimensional Banach space that coarsely embeds into every infinite dimensional Banach space. In particular, we disprove the conjecture that the separable infinite dimensional Hilbert space coarsely embeds into every infinite dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs and taking values in $T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $c_0$. Also, a purely metric characterization of finite dimensionality is obtained.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"31 1","pages":"699-717"},"PeriodicalIF":3.9,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/899","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43521339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Topological Noetherianity of polynomial functors 多项式函子的拓扑Noetherianity
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-05-03 DOI: 10.1090/JAMS/923
J. Draisma
{"title":"Topological Noetherianity of polynomial functors","authors":"J. Draisma","doi":"10.1090/JAMS/923","DOIUrl":"https://doi.org/10.1090/JAMS/923","url":null,"abstract":"We prove that any finite-degree polynomial functor over an infinite field is topologically Noetherian. This theorem is motivated by the recent resolution, by Ananyan-Hochster, of Stillman’s conjecture; and a recent Noetherianity proof by Derksen-Eggermont-Snowden for the space of cubics. Via work by Erman-Sam-Snowden, our theorem implies Stillman’s conjecture and indeed boundedness of a wider class of invariants of ideals in polynomial rings with a fixed number of generators of prescribed degrees.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/923","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43051433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
Cohomologie 𝑝-adique de la tour de Drinfeld: le cas de la dimension 1 Cohomologie𝑝-adique塔Drinfeld:维度1例
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2017-04-28 DOI: 10.1090/jams/935
P. Colmez, Gabriel Dospinescu, Wiesława Nizioł
{"title":"Cohomologie 𝑝-adique de la tour de Drinfeld: le cas de la dimension 1","authors":"P. Colmez, Gabriel Dospinescu, Wiesława Nizioł","doi":"10.1090/jams/935","DOIUrl":"https://doi.org/10.1090/jams/935","url":null,"abstract":"<p>We compute the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic geometric étale cohomology of the coverings of the Drinfeld half-plane, and we show that, if the base field is <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper Q Subscript p\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"bold\">Q</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbf {Q}_p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, this cohomology encodes the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic local Langlands correspondence for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-dimensional de Rham representations (of weight <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\u0000 <mml:semantics>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\u0000 <mml:semantics>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>).</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2017-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/935","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43585342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信